Computational optimal control of the terminal bunt manoeuvre-Part 1: minimum altitude case

This two‐part paper studies trajectory shaping of a generic cruise missile attacking a fixed target from above. This guidance problem is reinterpreted using optimal control theory resulting in two formulations: (1) minimum time‐integrated altitude (part 1) and (2) minimum flight time (part 2). Each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2007-09, Vol.28 (5), p.311-353
Hauptverfasser: Subchan, S., Zbikowski, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue 5
container_start_page 311
container_title Optimal control applications & methods
container_volume 28
creator Subchan, S.
Zbikowski, R.
description This two‐part paper studies trajectory shaping of a generic cruise missile attacking a fixed target from above. This guidance problem is reinterpreted using optimal control theory resulting in two formulations: (1) minimum time‐integrated altitude (part 1) and (2) minimum flight time (part 2). Each formulation entails non‐linear, two‐dimensional (vertical plane) missile flight dynamics, boundary conditions and path constraints, including pure state constraints. The focus here is on informed use of the tools of computational optimal control, rather than their development. Each of the formulations is solved using a three‐stage approach. In stage 1, the problem is discretized, effectively transforming it into a non‐linear programming problem, and hence suitable for approximate solution DIRCOL and NUDOCCCS. The results are used to discern the structure of the optimal solution, i.e. type of constraints active, time of their activation, switching and jump points. This qualitative analysis, employing the results of stage 1 and optimal control theory, constitutes stage 2. Finally, in stage 3, the insights of stage 2 are made precise by rigorous mathematical formulation of the relevant two‐point boundary value problems (TPBVPs), using the appropriate theorems of optimal control theory. The TPBVPs are then solved using BNDSCO and the results compared with the appropriate solutions of stage 1. For each formulation (minimum altitude and minimum time) the influence of boundary conditions on the structure of the optimal solution and the performance index is investigated. The results are then interpreted from the operational and computational perspectives. Copyright © 2007 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/oca.807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753695604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30942073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3627-e031aeaf998304ce17004b88cadcc220a9817c32a27f21bd022663d3ccafd4893</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgCs4p_oWe9CCdX5K2abxJ0U0czoNO8RKyNMVq29QkVffv7ajoSU8vH9_De3gROsQwwQDk1Cg5SYFtoREGzkMc42gbjQBHNCSQsl2059wLADBMyQg9ZaZuOy99aRpZBab1Zd2nMo23pr-LwD_rwGtbl5v_qmt8UMvG6O7d6vBWWh_gs6B_lnVXB7Lype9yHSjp9D7aKWTl9MF3jtH95cVdNgvni-lVdj4PFU0ICzVQLLUsOE8pREpjBhCt0lTJXClCQPIUM0WJJKwgeJUDIUlCc6qULPIo5XSMjofe1pq3Tjsv6tIpXVWy0aZzgsU04XECUS-P_pUUeESA0d9KZY1zVheitf0udi0wiM3Kol9Z9Cv38mSQH2Wl138xscjOBx0OunRef_5oaV9FwiiLxcPNVCyvH5fTGeYC0y-0sYy4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30942073</pqid></control><display><type>article</type><title>Computational optimal control of the terminal bunt manoeuvre-Part 1: minimum altitude case</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Subchan, S. ; Zbikowski, R.</creator><creatorcontrib>Subchan, S. ; Zbikowski, R.</creatorcontrib><description>This two‐part paper studies trajectory shaping of a generic cruise missile attacking a fixed target from above. This guidance problem is reinterpreted using optimal control theory resulting in two formulations: (1) minimum time‐integrated altitude (part 1) and (2) minimum flight time (part 2). Each formulation entails non‐linear, two‐dimensional (vertical plane) missile flight dynamics, boundary conditions and path constraints, including pure state constraints. The focus here is on informed use of the tools of computational optimal control, rather than their development. Each of the formulations is solved using a three‐stage approach. In stage 1, the problem is discretized, effectively transforming it into a non‐linear programming problem, and hence suitable for approximate solution DIRCOL and NUDOCCCS. The results are used to discern the structure of the optimal solution, i.e. type of constraints active, time of their activation, switching and jump points. This qualitative analysis, employing the results of stage 1 and optimal control theory, constitutes stage 2. Finally, in stage 3, the insights of stage 2 are made precise by rigorous mathematical formulation of the relevant two‐point boundary value problems (TPBVPs), using the appropriate theorems of optimal control theory. The TPBVPs are then solved using BNDSCO and the results compared with the appropriate solutions of stage 1. For each formulation (minimum altitude and minimum time) the influence of boundary conditions on the structure of the optimal solution and the performance index is investigated. The results are then interpreted from the operational and computational perspectives. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.807</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Altitude ; Boundary conditions ; Computation ; direct collocation ; direct method ; indirect method ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Optimal control ; Optimization ; terminal bunt manoeuvre</subject><ispartof>Optimal control applications &amp; methods, 2007-09, Vol.28 (5), p.311-353</ispartof><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3627-e031aeaf998304ce17004b88cadcc220a9817c32a27f21bd022663d3ccafd4893</citedby><cites>FETCH-LOGICAL-c3627-e031aeaf998304ce17004b88cadcc220a9817c32a27f21bd022663d3ccafd4893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.807$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.807$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Subchan, S.</creatorcontrib><creatorcontrib>Zbikowski, R.</creatorcontrib><title>Computational optimal control of the terminal bunt manoeuvre-Part 1: minimum altitude case</title><title>Optimal control applications &amp; methods</title><addtitle>Optim. Control Appl. Meth</addtitle><description>This two‐part paper studies trajectory shaping of a generic cruise missile attacking a fixed target from above. This guidance problem is reinterpreted using optimal control theory resulting in two formulations: (1) minimum time‐integrated altitude (part 1) and (2) minimum flight time (part 2). Each formulation entails non‐linear, two‐dimensional (vertical plane) missile flight dynamics, boundary conditions and path constraints, including pure state constraints. The focus here is on informed use of the tools of computational optimal control, rather than their development. Each of the formulations is solved using a three‐stage approach. In stage 1, the problem is discretized, effectively transforming it into a non‐linear programming problem, and hence suitable for approximate solution DIRCOL and NUDOCCCS. The results are used to discern the structure of the optimal solution, i.e. type of constraints active, time of their activation, switching and jump points. This qualitative analysis, employing the results of stage 1 and optimal control theory, constitutes stage 2. Finally, in stage 3, the insights of stage 2 are made precise by rigorous mathematical formulation of the relevant two‐point boundary value problems (TPBVPs), using the appropriate theorems of optimal control theory. The TPBVPs are then solved using BNDSCO and the results compared with the appropriate solutions of stage 1. For each formulation (minimum altitude and minimum time) the influence of boundary conditions on the structure of the optimal solution and the performance index is investigated. The results are then interpreted from the operational and computational perspectives. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><subject>Altitude</subject><subject>Boundary conditions</subject><subject>Computation</subject><subject>direct collocation</subject><subject>direct method</subject><subject>indirect method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>terminal bunt manoeuvre</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAYBuAgCs4p_oWe9CCdX5K2abxJ0U0czoNO8RKyNMVq29QkVffv7ajoSU8vH9_De3gROsQwwQDk1Cg5SYFtoREGzkMc42gbjQBHNCSQsl2059wLADBMyQg9ZaZuOy99aRpZBab1Zd2nMo23pr-LwD_rwGtbl5v_qmt8UMvG6O7d6vBWWh_gs6B_lnVXB7Lype9yHSjp9D7aKWTl9MF3jtH95cVdNgvni-lVdj4PFU0ICzVQLLUsOE8pREpjBhCt0lTJXClCQPIUM0WJJKwgeJUDIUlCc6qULPIo5XSMjofe1pq3Tjsv6tIpXVWy0aZzgsU04XECUS-P_pUUeESA0d9KZY1zVheitf0udi0wiM3Kol9Z9Cv38mSQH2Wl138xscjOBx0OunRef_5oaV9FwiiLxcPNVCyvH5fTGeYC0y-0sYy4</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Subchan, S.</creator><creator>Zbikowski, R.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200709</creationdate><title>Computational optimal control of the terminal bunt manoeuvre-Part 1: minimum altitude case</title><author>Subchan, S. ; Zbikowski, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3627-e031aeaf998304ce17004b88cadcc220a9817c32a27f21bd022663d3ccafd4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Altitude</topic><topic>Boundary conditions</topic><topic>Computation</topic><topic>direct collocation</topic><topic>direct method</topic><topic>indirect method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>terminal bunt manoeuvre</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subchan, S.</creatorcontrib><creatorcontrib>Zbikowski, R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subchan, S.</au><au>Zbikowski, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational optimal control of the terminal bunt manoeuvre-Part 1: minimum altitude case</atitle><jtitle>Optimal control applications &amp; methods</jtitle><addtitle>Optim. Control Appl. Meth</addtitle><date>2007-09</date><risdate>2007</risdate><volume>28</volume><issue>5</issue><spage>311</spage><epage>353</epage><pages>311-353</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>This two‐part paper studies trajectory shaping of a generic cruise missile attacking a fixed target from above. This guidance problem is reinterpreted using optimal control theory resulting in two formulations: (1) minimum time‐integrated altitude (part 1) and (2) minimum flight time (part 2). Each formulation entails non‐linear, two‐dimensional (vertical plane) missile flight dynamics, boundary conditions and path constraints, including pure state constraints. The focus here is on informed use of the tools of computational optimal control, rather than their development. Each of the formulations is solved using a three‐stage approach. In stage 1, the problem is discretized, effectively transforming it into a non‐linear programming problem, and hence suitable for approximate solution DIRCOL and NUDOCCCS. The results are used to discern the structure of the optimal solution, i.e. type of constraints active, time of their activation, switching and jump points. This qualitative analysis, employing the results of stage 1 and optimal control theory, constitutes stage 2. Finally, in stage 3, the insights of stage 2 are made precise by rigorous mathematical formulation of the relevant two‐point boundary value problems (TPBVPs), using the appropriate theorems of optimal control theory. The TPBVPs are then solved using BNDSCO and the results compared with the appropriate solutions of stage 1. For each formulation (minimum altitude and minimum time) the influence of boundary conditions on the structure of the optimal solution and the performance index is investigated. The results are then interpreted from the operational and computational perspectives. Copyright © 2007 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/oca.807</doi><tpages>43</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2007-09, Vol.28 (5), p.311-353
issn 0143-2087
1099-1514
language eng
recordid cdi_proquest_miscellaneous_753695604
source Wiley Online Library - AutoHoldings Journals
subjects Altitude
Boundary conditions
Computation
direct collocation
direct method
indirect method
Mathematical analysis
Mathematical models
Nonlinearity
Optimal control
Optimization
terminal bunt manoeuvre
title Computational optimal control of the terminal bunt manoeuvre-Part 1: minimum altitude case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20optimal%20control%20of%20the%20terminal%20bunt%20manoeuvre-Part%201:%20minimum%20altitude%20case&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Subchan,%20S.&rft.date=2007-09&rft.volume=28&rft.issue=5&rft.spage=311&rft.epage=353&rft.pages=311-353&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.807&rft_dat=%3Cproquest_cross%3E30942073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30942073&rft_id=info:pmid/&rfr_iscdi=true