TEM characterization of iron-oxide-coated ceramic membranes

Commercially available porous alumina–zirconia–titania ceramic (AZTC) membranes having a titania surface coating were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and the Brunauer–Emmett–Teller (BET) method. TEM photomicrographs showed the as-received AZTC mem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2009-08, Vol.44 (15), p.4148-4154
Hauptverfasser: Karnik, B. S., Baumann, M. J., Corneal, L. M., Masten, S. J., Davies, S. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4154
container_issue 15
container_start_page 4148
container_title Journal of materials science
container_volume 44
creator Karnik, B. S.
Baumann, M. J.
Corneal, L. M.
Masten, S. J.
Davies, S. H.
description Commercially available porous alumina–zirconia–titania ceramic (AZTC) membranes having a titania surface coating were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and the Brunauer–Emmett–Teller (BET) method. TEM photomicrographs showed the as-received AZTC membrane to be a multi-layered structure consisting of a porous alumina–zirconia–titania core having ultrafine pore sizes, coated by an additional layer of nanoporous titania. Electron diffraction studies revealed an amorphous surface titania layer while the underlying AZTC membrane was crystalline. The AZTC membranes were coated 20, 30, 40, 45, or 60 times with iron oxide (Fe 2 O 3 ) nanoparticles, after which the membranes were sintered in air at 900 °C for 30 min. TEM revealed a relatively uniform nanoporous Fe 2 O 3 coating on the sintered, coated membranes, where the Fe 2 O 3 coating thickness increased with increasing number of layers. Electron diffraction patterns showed the Fe 2 O 3 coating to be crystalline in nature. This was confirmed by the XRD results showing the structure to be α-Fe 2 O 3 , while the AZTC membrane was a mixture of the anatase and rutile phase of TiO 2 as well as ZrO 2 and corundum, Al 2 O 3 . The average pore size of the underlying AZTC membrane increased after the Fe 2 O 3 -coated membrane was sintered. The nanoporosity in the sintered Fe 2 O 3 coating increased until 40 layers, beyond which no significant increases in the average pore size were observed. The iron-oxide-coated membrane improved catalytic properties when used in combination with ozone to treat water. The optimal benefit, in terms of water treatment efficacy, was found at 40 layers of Fe 2 O 3 .
doi_str_mv 10.1007/s10853-009-3608-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753692253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259650528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-6bc8ac5403c1a6e0d442eb79dc8192ecc4e8a9ad3c36ba1947d7176b7bd5b5d53</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AC1fRm2TywpWU-oCKm7oOmSTVlM6kJlNQf71TRhAEV3dxv3M4fAidE7giAPK6EFCcYQCNmQCF2QGaEC4ZrhWwQzQBoBTTWpBjdFLKGgC4pGSCbpbzp8q92WxdH3L8sn1MXZVWVcypw-kj-oBdsn3wlQvZttFVbWibbLtQTtHRym5KOPu5U_RyN1_OHvDi-f5xdrvAjindY9E4ZR2vgTliRQBf1zQ0UnuniKbBuTooq61njonGEl1LL4kUjWw8b7jnbIoux95tTu-7UHrTxuLCZjOMSLtiJGdCU8rZQF78Iddpl7thnBn-WnDgVA0UGSmXUyk5rMw2x9bmT0PA7G2a0aYZbJq9TbNvpmOmDGz3GvJv8_-hb4ljdrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259650528</pqid></control><display><type>article</type><title>TEM characterization of iron-oxide-coated ceramic membranes</title><source>SpringerNature Journals</source><creator>Karnik, B. S. ; Baumann, M. J. ; Corneal, L. M. ; Masten, S. J. ; Davies, S. H.</creator><creatorcontrib>Karnik, B. S. ; Baumann, M. J. ; Corneal, L. M. ; Masten, S. J. ; Davies, S. H.</creatorcontrib><description>Commercially available porous alumina–zirconia–titania ceramic (AZTC) membranes having a titania surface coating were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and the Brunauer–Emmett–Teller (BET) method. TEM photomicrographs showed the as-received AZTC membrane to be a multi-layered structure consisting of a porous alumina–zirconia–titania core having ultrafine pore sizes, coated by an additional layer of nanoporous titania. Electron diffraction studies revealed an amorphous surface titania layer while the underlying AZTC membrane was crystalline. The AZTC membranes were coated 20, 30, 40, 45, or 60 times with iron oxide (Fe 2 O 3 ) nanoparticles, after which the membranes were sintered in air at 900 °C for 30 min. TEM revealed a relatively uniform nanoporous Fe 2 O 3 coating on the sintered, coated membranes, where the Fe 2 O 3 coating thickness increased with increasing number of layers. Electron diffraction patterns showed the Fe 2 O 3 coating to be crystalline in nature. This was confirmed by the XRD results showing the structure to be α-Fe 2 O 3 , while the AZTC membrane was a mixture of the anatase and rutile phase of TiO 2 as well as ZrO 2 and corundum, Al 2 O 3 . The average pore size of the underlying AZTC membrane increased after the Fe 2 O 3 -coated membrane was sintered. The nanoporosity in the sintered Fe 2 O 3 coating increased until 40 layers, beyond which no significant increases in the average pore size were observed. The iron-oxide-coated membrane improved catalytic properties when used in combination with ozone to treat water. The optimal benefit, in terms of water treatment efficacy, was found at 40 layers of Fe 2 O 3 .</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-009-3608-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminum oxide ; Anatase ; Catalysis ; Ceramic coatings ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coating ; Corundum ; Crystal structure ; Crystallinity ; Crystallography and Scattering Methods ; Diffraction patterns ; Electron diffraction ; Iron oxides ; Materials Science ; Membranes ; Multilayers ; Nanomaterials ; Nanoparticles ; Nanostructure ; Photomicrographs ; Polymer Sciences ; Pore size ; Porosity ; Sintering ; Sintering (powder metallurgy) ; Solid Mechanics ; Titanium dioxide ; Transmission electron microscopy ; Ultrafines ; Water treatment ; X-ray diffraction ; Zirconium dioxide</subject><ispartof>Journal of materials science, 2009-08, Vol.44 (15), p.4148-4154</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Journal of Materials Science is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-6bc8ac5403c1a6e0d442eb79dc8192ecc4e8a9ad3c36ba1947d7176b7bd5b5d53</citedby><cites>FETCH-LOGICAL-c389t-6bc8ac5403c1a6e0d442eb79dc8192ecc4e8a9ad3c36ba1947d7176b7bd5b5d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-009-3608-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-009-3608-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Karnik, B. S.</creatorcontrib><creatorcontrib>Baumann, M. J.</creatorcontrib><creatorcontrib>Corneal, L. M.</creatorcontrib><creatorcontrib>Masten, S. J.</creatorcontrib><creatorcontrib>Davies, S. H.</creatorcontrib><title>TEM characterization of iron-oxide-coated ceramic membranes</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Commercially available porous alumina–zirconia–titania ceramic (AZTC) membranes having a titania surface coating were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and the Brunauer–Emmett–Teller (BET) method. TEM photomicrographs showed the as-received AZTC membrane to be a multi-layered structure consisting of a porous alumina–zirconia–titania core having ultrafine pore sizes, coated by an additional layer of nanoporous titania. Electron diffraction studies revealed an amorphous surface titania layer while the underlying AZTC membrane was crystalline. The AZTC membranes were coated 20, 30, 40, 45, or 60 times with iron oxide (Fe 2 O 3 ) nanoparticles, after which the membranes were sintered in air at 900 °C for 30 min. TEM revealed a relatively uniform nanoporous Fe 2 O 3 coating on the sintered, coated membranes, where the Fe 2 O 3 coating thickness increased with increasing number of layers. Electron diffraction patterns showed the Fe 2 O 3 coating to be crystalline in nature. This was confirmed by the XRD results showing the structure to be α-Fe 2 O 3 , while the AZTC membrane was a mixture of the anatase and rutile phase of TiO 2 as well as ZrO 2 and corundum, Al 2 O 3 . The average pore size of the underlying AZTC membrane increased after the Fe 2 O 3 -coated membrane was sintered. The nanoporosity in the sintered Fe 2 O 3 coating increased until 40 layers, beyond which no significant increases in the average pore size were observed. The iron-oxide-coated membrane improved catalytic properties when used in combination with ozone to treat water. The optimal benefit, in terms of water treatment efficacy, was found at 40 layers of Fe 2 O 3 .</description><subject>Aluminum oxide</subject><subject>Anatase</subject><subject>Catalysis</subject><subject>Ceramic coatings</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coating</subject><subject>Corundum</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffraction patterns</subject><subject>Electron diffraction</subject><subject>Iron oxides</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Multilayers</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Photomicrographs</subject><subject>Polymer Sciences</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid Mechanics</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><subject>Ultrafines</subject><subject>Water treatment</subject><subject>X-ray diffraction</subject><subject>Zirconium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2AC1fRm2TywpWU-oCKm7oOmSTVlM6kJlNQf71TRhAEV3dxv3M4fAidE7giAPK6EFCcYQCNmQCF2QGaEC4ZrhWwQzQBoBTTWpBjdFLKGgC4pGSCbpbzp8q92WxdH3L8sn1MXZVWVcypw-kj-oBdsn3wlQvZttFVbWibbLtQTtHRym5KOPu5U_RyN1_OHvDi-f5xdrvAjindY9E4ZR2vgTliRQBf1zQ0UnuniKbBuTooq61njonGEl1LL4kUjWw8b7jnbIoux95tTu-7UHrTxuLCZjOMSLtiJGdCU8rZQF78Iddpl7thnBn-WnDgVA0UGSmXUyk5rMw2x9bmT0PA7G2a0aYZbJq9TbNvpmOmDGz3GvJv8_-hb4ljdrc</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Karnik, B. S.</creator><creator>Baumann, M. J.</creator><creator>Corneal, L. M.</creator><creator>Masten, S. J.</creator><creator>Davies, S. H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090801</creationdate><title>TEM characterization of iron-oxide-coated ceramic membranes</title><author>Karnik, B. S. ; Baumann, M. J. ; Corneal, L. M. ; Masten, S. J. ; Davies, S. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-6bc8ac5403c1a6e0d442eb79dc8192ecc4e8a9ad3c36ba1947d7176b7bd5b5d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aluminum oxide</topic><topic>Anatase</topic><topic>Catalysis</topic><topic>Ceramic coatings</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coating</topic><topic>Corundum</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffraction patterns</topic><topic>Electron diffraction</topic><topic>Iron oxides</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Multilayers</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Photomicrographs</topic><topic>Polymer Sciences</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid Mechanics</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><topic>Ultrafines</topic><topic>Water treatment</topic><topic>X-ray diffraction</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karnik, B. S.</creatorcontrib><creatorcontrib>Baumann, M. J.</creatorcontrib><creatorcontrib>Corneal, L. M.</creatorcontrib><creatorcontrib>Masten, S. J.</creatorcontrib><creatorcontrib>Davies, S. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karnik, B. S.</au><au>Baumann, M. J.</au><au>Corneal, L. M.</au><au>Masten, S. J.</au><au>Davies, S. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TEM characterization of iron-oxide-coated ceramic membranes</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>44</volume><issue>15</issue><spage>4148</spage><epage>4154</epage><pages>4148-4154</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Commercially available porous alumina–zirconia–titania ceramic (AZTC) membranes having a titania surface coating were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and the Brunauer–Emmett–Teller (BET) method. TEM photomicrographs showed the as-received AZTC membrane to be a multi-layered structure consisting of a porous alumina–zirconia–titania core having ultrafine pore sizes, coated by an additional layer of nanoporous titania. Electron diffraction studies revealed an amorphous surface titania layer while the underlying AZTC membrane was crystalline. The AZTC membranes were coated 20, 30, 40, 45, or 60 times with iron oxide (Fe 2 O 3 ) nanoparticles, after which the membranes were sintered in air at 900 °C for 30 min. TEM revealed a relatively uniform nanoporous Fe 2 O 3 coating on the sintered, coated membranes, where the Fe 2 O 3 coating thickness increased with increasing number of layers. Electron diffraction patterns showed the Fe 2 O 3 coating to be crystalline in nature. This was confirmed by the XRD results showing the structure to be α-Fe 2 O 3 , while the AZTC membrane was a mixture of the anatase and rutile phase of TiO 2 as well as ZrO 2 and corundum, Al 2 O 3 . The average pore size of the underlying AZTC membrane increased after the Fe 2 O 3 -coated membrane was sintered. The nanoporosity in the sintered Fe 2 O 3 coating increased until 40 layers, beyond which no significant increases in the average pore size were observed. The iron-oxide-coated membrane improved catalytic properties when used in combination with ozone to treat water. The optimal benefit, in terms of water treatment efficacy, was found at 40 layers of Fe 2 O 3 .</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-009-3608-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2009-08, Vol.44 (15), p.4148-4154
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_753692253
source SpringerNature Journals
subjects Aluminum oxide
Anatase
Catalysis
Ceramic coatings
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Coating
Corundum
Crystal structure
Crystallinity
Crystallography and Scattering Methods
Diffraction patterns
Electron diffraction
Iron oxides
Materials Science
Membranes
Multilayers
Nanomaterials
Nanoparticles
Nanostructure
Photomicrographs
Polymer Sciences
Pore size
Porosity
Sintering
Sintering (powder metallurgy)
Solid Mechanics
Titanium dioxide
Transmission electron microscopy
Ultrafines
Water treatment
X-ray diffraction
Zirconium dioxide
title TEM characterization of iron-oxide-coated ceramic membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TEM%20characterization%20of%20iron-oxide-coated%20ceramic%20membranes&rft.jtitle=Journal%20of%20materials%20science&rft.au=Karnik,%20B.%20S.&rft.date=2009-08-01&rft.volume=44&rft.issue=15&rft.spage=4148&rft.epage=4154&rft.pages=4148-4154&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-009-3608-3&rft_dat=%3Cproquest_cross%3E2259650528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259650528&rft_id=info:pmid/&rfr_iscdi=true