Modelling of evaporation from the reservoir of Yuvacik dam using adaptive neuro-fuzzy inference systems

Adaptive neuro-fuzzy inference system (ANFIS) models are proposed as an alternative approach of evaporation estimation for Yuvacik Dam. This study has three objectives: (1) to develop ANFIS models to estimate daily pan evaporation from measured meteorological data; (2) to compare the ANFIS model to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence 2010-09, Vol.23 (6), p.961-967
Hauptverfasser: Dogan, Emrah, Gumrukcuoglu, Mahnaz, Sandalci, Mehmet, Opan, Mucahit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 967
container_issue 6
container_start_page 961
container_title Engineering applications of artificial intelligence
container_volume 23
creator Dogan, Emrah
Gumrukcuoglu, Mahnaz
Sandalci, Mehmet
Opan, Mucahit
description Adaptive neuro-fuzzy inference system (ANFIS) models are proposed as an alternative approach of evaporation estimation for Yuvacik Dam. This study has three objectives: (1) to develop ANFIS models to estimate daily pan evaporation from measured meteorological data; (2) to compare the ANFIS model to the multiple linear regression (MLR) model; and (3) to evaluate the potential of ANFIS model. Various combinations of daily meteorological data, namely air temperature, relative humidity, solar radiation and wind speed, are used as inputs to the ANFIS so as to evaluate the degree of effect of each of these variables on daily pan evaporation. The results of the ANFIS model are compared with MLR model. Mean square error, average absolute relative error and coefficient of determination statistics are used as comparison criteria for the evaluation of the model performances. The ANFIS technique whose inputs are solar radiation, air temperature, relative humidity and wind speed, gives mean square errors of 0.181 mm, average absolute relative errors of 9.590% mm, and determination coefficient of 0.958 for Yuvacik Dam station, respectively. Based on the comparisons, it was found that the ANFIS technique could be employed successfully in modelling evaporation process from the available climatic data.
doi_str_mv 10.1016/j.engappai.2010.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753686823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197610000928</els_id><sourcerecordid>753686823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6a16ecfd817b3cbc1c845ba072ae55b0df39c91b9f2644cfec6182ca2df4bf043</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BcnOVWvSpGm7U8QvGHGjC1chTV7GjNOmJm1h5tfbMrp29eBxz4V7ELqkJKWEiutNCu1adZ1yaUamJ2EpIcURWtCyYIkoRHWMFqTKs4RWhThFZzFuCCGs5GKB1i_ewHbr2jX2FsOoOh9U73yLbfAN7j8BB4gQRu_CnPgYRqXdFzaqwUOcMWVU17sRcAtD8Ikd9vsddq2FAK0GHHexhyaeoxOrthEufu8SvT_cv909JavXx-e721WiGed9IhQVoK0paVEzXWuqS57XihSZgjyvibGs0hWtK5sJzrUFLWiZaZUZy2tLOFuiq0NvF_z3ALGXjYt6Wqha8EOURc5EKcqMTUlxSOrgYwxgZRdco8JOUiJnsXIj_8TKWawkTE5iJ_DmAMK0Y3QQZNRu3mpcAN1L491_FT_3oYhX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753686823</pqid></control><display><type>article</type><title>Modelling of evaporation from the reservoir of Yuvacik dam using adaptive neuro-fuzzy inference systems</title><source>Elsevier ScienceDirect Journals</source><creator>Dogan, Emrah ; Gumrukcuoglu, Mahnaz ; Sandalci, Mehmet ; Opan, Mucahit</creator><creatorcontrib>Dogan, Emrah ; Gumrukcuoglu, Mahnaz ; Sandalci, Mehmet ; Opan, Mucahit</creatorcontrib><description>Adaptive neuro-fuzzy inference system (ANFIS) models are proposed as an alternative approach of evaporation estimation for Yuvacik Dam. This study has three objectives: (1) to develop ANFIS models to estimate daily pan evaporation from measured meteorological data; (2) to compare the ANFIS model to the multiple linear regression (MLR) model; and (3) to evaluate the potential of ANFIS model. Various combinations of daily meteorological data, namely air temperature, relative humidity, solar radiation and wind speed, are used as inputs to the ANFIS so as to evaluate the degree of effect of each of these variables on daily pan evaporation. The results of the ANFIS model are compared with MLR model. Mean square error, average absolute relative error and coefficient of determination statistics are used as comparison criteria for the evaluation of the model performances. The ANFIS technique whose inputs are solar radiation, air temperature, relative humidity and wind speed, gives mean square errors of 0.181 mm, average absolute relative errors of 9.590% mm, and determination coefficient of 0.958 for Yuvacik Dam station, respectively. Based on the comparisons, it was found that the ANFIS technique could be employed successfully in modelling evaporation process from the available climatic data.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2010.03.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptive neuro-fuzzy inference systems ; Adaptive systems ; Coefficients ; Daily pan evaporation ; Errors ; Evaporation ; Inference ; Mathematical models ; Model performances ; Modelling ; Multiple linear regression model ; Relative humidity ; Yuvacik Dam station</subject><ispartof>Engineering applications of artificial intelligence, 2010-09, Vol.23 (6), p.961-967</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6a16ecfd817b3cbc1c845ba072ae55b0df39c91b9f2644cfec6182ca2df4bf043</citedby><cites>FETCH-LOGICAL-c344t-6a16ecfd817b3cbc1c845ba072ae55b0df39c91b9f2644cfec6182ca2df4bf043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0952197610000928$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dogan, Emrah</creatorcontrib><creatorcontrib>Gumrukcuoglu, Mahnaz</creatorcontrib><creatorcontrib>Sandalci, Mehmet</creatorcontrib><creatorcontrib>Opan, Mucahit</creatorcontrib><title>Modelling of evaporation from the reservoir of Yuvacik dam using adaptive neuro-fuzzy inference systems</title><title>Engineering applications of artificial intelligence</title><description>Adaptive neuro-fuzzy inference system (ANFIS) models are proposed as an alternative approach of evaporation estimation for Yuvacik Dam. This study has three objectives: (1) to develop ANFIS models to estimate daily pan evaporation from measured meteorological data; (2) to compare the ANFIS model to the multiple linear regression (MLR) model; and (3) to evaluate the potential of ANFIS model. Various combinations of daily meteorological data, namely air temperature, relative humidity, solar radiation and wind speed, are used as inputs to the ANFIS so as to evaluate the degree of effect of each of these variables on daily pan evaporation. The results of the ANFIS model are compared with MLR model. Mean square error, average absolute relative error and coefficient of determination statistics are used as comparison criteria for the evaluation of the model performances. The ANFIS technique whose inputs are solar radiation, air temperature, relative humidity and wind speed, gives mean square errors of 0.181 mm, average absolute relative errors of 9.590% mm, and determination coefficient of 0.958 for Yuvacik Dam station, respectively. Based on the comparisons, it was found that the ANFIS technique could be employed successfully in modelling evaporation process from the available climatic data.</description><subject>Adaptive neuro-fuzzy inference systems</subject><subject>Adaptive systems</subject><subject>Coefficients</subject><subject>Daily pan evaporation</subject><subject>Errors</subject><subject>Evaporation</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Model performances</subject><subject>Modelling</subject><subject>Multiple linear regression model</subject><subject>Relative humidity</subject><subject>Yuvacik Dam station</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BcnOVWvSpGm7U8QvGHGjC1chTV7GjNOmJm1h5tfbMrp29eBxz4V7ELqkJKWEiutNCu1adZ1yaUamJ2EpIcURWtCyYIkoRHWMFqTKs4RWhThFZzFuCCGs5GKB1i_ewHbr2jX2FsOoOh9U73yLbfAN7j8BB4gQRu_CnPgYRqXdFzaqwUOcMWVU17sRcAtD8Ikd9vsddq2FAK0GHHexhyaeoxOrthEufu8SvT_cv909JavXx-e721WiGed9IhQVoK0paVEzXWuqS57XihSZgjyvibGs0hWtK5sJzrUFLWiZaZUZy2tLOFuiq0NvF_z3ALGXjYt6Wqha8EOURc5EKcqMTUlxSOrgYwxgZRdco8JOUiJnsXIj_8TKWawkTE5iJ_DmAMK0Y3QQZNRu3mpcAN1L491_FT_3oYhX</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Dogan, Emrah</creator><creator>Gumrukcuoglu, Mahnaz</creator><creator>Sandalci, Mehmet</creator><creator>Opan, Mucahit</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100901</creationdate><title>Modelling of evaporation from the reservoir of Yuvacik dam using adaptive neuro-fuzzy inference systems</title><author>Dogan, Emrah ; Gumrukcuoglu, Mahnaz ; Sandalci, Mehmet ; Opan, Mucahit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6a16ecfd817b3cbc1c845ba072ae55b0df39c91b9f2644cfec6182ca2df4bf043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive neuro-fuzzy inference systems</topic><topic>Adaptive systems</topic><topic>Coefficients</topic><topic>Daily pan evaporation</topic><topic>Errors</topic><topic>Evaporation</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Model performances</topic><topic>Modelling</topic><topic>Multiple linear regression model</topic><topic>Relative humidity</topic><topic>Yuvacik Dam station</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dogan, Emrah</creatorcontrib><creatorcontrib>Gumrukcuoglu, Mahnaz</creatorcontrib><creatorcontrib>Sandalci, Mehmet</creatorcontrib><creatorcontrib>Opan, Mucahit</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dogan, Emrah</au><au>Gumrukcuoglu, Mahnaz</au><au>Sandalci, Mehmet</au><au>Opan, Mucahit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of evaporation from the reservoir of Yuvacik dam using adaptive neuro-fuzzy inference systems</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>23</volume><issue>6</issue><spage>961</spage><epage>967</epage><pages>961-967</pages><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>Adaptive neuro-fuzzy inference system (ANFIS) models are proposed as an alternative approach of evaporation estimation for Yuvacik Dam. This study has three objectives: (1) to develop ANFIS models to estimate daily pan evaporation from measured meteorological data; (2) to compare the ANFIS model to the multiple linear regression (MLR) model; and (3) to evaluate the potential of ANFIS model. Various combinations of daily meteorological data, namely air temperature, relative humidity, solar radiation and wind speed, are used as inputs to the ANFIS so as to evaluate the degree of effect of each of these variables on daily pan evaporation. The results of the ANFIS model are compared with MLR model. Mean square error, average absolute relative error and coefficient of determination statistics are used as comparison criteria for the evaluation of the model performances. The ANFIS technique whose inputs are solar radiation, air temperature, relative humidity and wind speed, gives mean square errors of 0.181 mm, average absolute relative errors of 9.590% mm, and determination coefficient of 0.958 for Yuvacik Dam station, respectively. Based on the comparisons, it was found that the ANFIS technique could be employed successfully in modelling evaporation process from the available climatic data.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2010.03.007</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-1976
ispartof Engineering applications of artificial intelligence, 2010-09, Vol.23 (6), p.961-967
issn 0952-1976
1873-6769
language eng
recordid cdi_proquest_miscellaneous_753686823
source Elsevier ScienceDirect Journals
subjects Adaptive neuro-fuzzy inference systems
Adaptive systems
Coefficients
Daily pan evaporation
Errors
Evaporation
Inference
Mathematical models
Model performances
Modelling
Multiple linear regression model
Relative humidity
Yuvacik Dam station
title Modelling of evaporation from the reservoir of Yuvacik dam using adaptive neuro-fuzzy inference systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20evaporation%20from%20the%20reservoir%20of%20Yuvacik%20dam%20using%20adaptive%20neuro-fuzzy%20inference%20systems&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Dogan,%20Emrah&rft.date=2010-09-01&rft.volume=23&rft.issue=6&rft.spage=961&rft.epage=967&rft.pages=961-967&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2010.03.007&rft_dat=%3Cproquest_cross%3E753686823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753686823&rft_id=info:pmid/&rft_els_id=S0952197610000928&rfr_iscdi=true