Development, application and evaluation of a computational tool for management high voltage break disconnector based on self-organizing maps and image processing

This work has the objective of developing, analysing and applying a new tool for management the status of break disconnectors in high voltage substations from digital images. This tool uses a non-supervised kind of artificial neural network using the Kohonen learning algorithm, known as a self-organ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2010-11, Vol.51 (11), p.2279-2284
Hauptverfasser: Colaço, Daniel Freitas, de Alexandria, Auzuir R., Cortez, Paulo César, Frota, João Batista B., Lima, José Nunes de, de Albuquerque, Victor Hugo C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2284
container_issue 11
container_start_page 2279
container_title Energy conversion and management
container_volume 51
creator Colaço, Daniel Freitas
de Alexandria, Auzuir R.
Cortez, Paulo César
Frota, João Batista B.
Lima, José Nunes de
de Albuquerque, Victor Hugo C.
description This work has the objective of developing, analysing and applying a new tool for management the status of break disconnectors in high voltage substations from digital images. This tool uses a non-supervised kind of artificial neural network using the Kohonen learning algorithm, known as a self-organizing maps. In order to develop the proposed tool, C/C++ programming language, provided with easily used interfaces, is used. In order to obtain the results, three environments are considered: one for laboratory simulation and two pilot projects installed in the Fortaleza II/CHESF substation. These pilots are used for 230 kV EV-2000 type and 500 kV semi-pantographic type break disconnector management tests. The results prove the developed system’s efficiency, because it is able to detect 100% of open and closed identification situations. However, the neural network utilised for management break disconnectors has become suitable for installation in high voltage substations in order to support the maintenance team in safely handling these disconnectors.
doi_str_mv 10.1016/j.enconman.2010.03.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753686809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890410001378</els_id><sourcerecordid>753686809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3a353b200bc0bf320fdeb05cd254e95ea24ff96d10b12fed44379563ff10033f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEEkvhFZAvCA5kGduJk9xAhRakSlzgbDnOeOvFsYOdXQnehjdltls4wsny-Jv_H89fVc85bDlw9Wa_xWhTnE3cCqAiyC0I-aDa8L4baiFE97DaAB9U3Q_QPK6elLIHANmC2lS_3uMRQ1pmjOtrZpYleGtWnyIzcWJ4NOFwvibHDLNpXg7rXcEEtqYUmEuZkbXZ4UmC3frdLTumsFKBjRnNNzb5QuNFtCuhoyk4MdIrGFyd8s5E_9PHHWks5c7Tz6fWJSeLpdDL0-qRM6Hgs_vzovp69eHL5cf65vP1p8t3N7VtoFtraWQrRwEwWhidFOAmHKG1k2gbHFo0onFuUBOHkQuHU9PIbmiVdI7TLqSTF9XLsy5Zfz9gWfVMg2MIJmI6FN21UvWqh4HIV_8kueq4lNC3glB1Rm1OpWR0esn0wfxDc9Cn9PRe_0lPn9LTIDWlR40v7j1MsSa4bKL15W-3EMOgOmiIe3vmkFZz9Jh1sZ4UcfKZNq6n5P9n9RvlObd3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671330852</pqid></control><display><type>article</type><title>Development, application and evaluation of a computational tool for management high voltage break disconnector based on self-organizing maps and image processing</title><source>Elsevier ScienceDirect Journals</source><creator>Colaço, Daniel Freitas ; de Alexandria, Auzuir R. ; Cortez, Paulo César ; Frota, João Batista B. ; Lima, José Nunes de ; de Albuquerque, Victor Hugo C.</creator><creatorcontrib>Colaço, Daniel Freitas ; de Alexandria, Auzuir R. ; Cortez, Paulo César ; Frota, João Batista B. ; Lima, José Nunes de ; de Albuquerque, Victor Hugo C.</creatorcontrib><description>This work has the objective of developing, analysing and applying a new tool for management the status of break disconnectors in high voltage substations from digital images. This tool uses a non-supervised kind of artificial neural network using the Kohonen learning algorithm, known as a self-organizing maps. In order to develop the proposed tool, C/C++ programming language, provided with easily used interfaces, is used. In order to obtain the results, three environments are considered: one for laboratory simulation and two pilot projects installed in the Fortaleza II/CHESF substation. These pilots are used for 230 kV EV-2000 type and 500 kV semi-pantographic type break disconnector management tests. The results prove the developed system’s efficiency, because it is able to detect 100% of open and closed identification situations. However, the neural network utilised for management break disconnectors has become suitable for installation in high voltage substations in order to support the maintenance team in safely handling these disconnectors.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2010.03.023</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Break disconnectors ; Breaking ; Computer simulation ; Disengaging ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Exact sciences and technology ; High voltages ; Maintenance ; Management ; Power networks and lines ; SOM artificial neural network ; Substations</subject><ispartof>Energy conversion and management, 2010-11, Vol.51 (11), p.2279-2284</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3a353b200bc0bf320fdeb05cd254e95ea24ff96d10b12fed44379563ff10033f3</citedby><cites>FETCH-LOGICAL-c407t-3a353b200bc0bf320fdeb05cd254e95ea24ff96d10b12fed44379563ff10033f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2010.03.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22996704$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Colaço, Daniel Freitas</creatorcontrib><creatorcontrib>de Alexandria, Auzuir R.</creatorcontrib><creatorcontrib>Cortez, Paulo César</creatorcontrib><creatorcontrib>Frota, João Batista B.</creatorcontrib><creatorcontrib>Lima, José Nunes de</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><title>Development, application and evaluation of a computational tool for management high voltage break disconnector based on self-organizing maps and image processing</title><title>Energy conversion and management</title><description>This work has the objective of developing, analysing and applying a new tool for management the status of break disconnectors in high voltage substations from digital images. This tool uses a non-supervised kind of artificial neural network using the Kohonen learning algorithm, known as a self-organizing maps. In order to develop the proposed tool, C/C++ programming language, provided with easily used interfaces, is used. In order to obtain the results, three environments are considered: one for laboratory simulation and two pilot projects installed in the Fortaleza II/CHESF substation. These pilots are used for 230 kV EV-2000 type and 500 kV semi-pantographic type break disconnector management tests. The results prove the developed system’s efficiency, because it is able to detect 100% of open and closed identification situations. However, the neural network utilised for management break disconnectors has become suitable for installation in high voltage substations in order to support the maintenance team in safely handling these disconnectors.</description><subject>Applied sciences</subject><subject>Break disconnectors</subject><subject>Breaking</subject><subject>Computer simulation</subject><subject>Disengaging</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>High voltages</subject><subject>Maintenance</subject><subject>Management</subject><subject>Power networks and lines</subject><subject>SOM artificial neural network</subject><subject>Substations</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhiMEEkvhFZAvCA5kGduJk9xAhRakSlzgbDnOeOvFsYOdXQnehjdltls4wsny-Jv_H89fVc85bDlw9Wa_xWhTnE3cCqAiyC0I-aDa8L4baiFE97DaAB9U3Q_QPK6elLIHANmC2lS_3uMRQ1pmjOtrZpYleGtWnyIzcWJ4NOFwvibHDLNpXg7rXcEEtqYUmEuZkbXZ4UmC3frdLTumsFKBjRnNNzb5QuNFtCuhoyk4MdIrGFyd8s5E_9PHHWks5c7Tz6fWJSeLpdDL0-qRM6Hgs_vzovp69eHL5cf65vP1p8t3N7VtoFtraWQrRwEwWhidFOAmHKG1k2gbHFo0onFuUBOHkQuHU9PIbmiVdI7TLqSTF9XLsy5Zfz9gWfVMg2MIJmI6FN21UvWqh4HIV_8kueq4lNC3glB1Rm1OpWR0esn0wfxDc9Cn9PRe_0lPn9LTIDWlR40v7j1MsSa4bKL15W-3EMOgOmiIe3vmkFZz9Jh1sZ4UcfKZNq6n5P9n9RvlObd3</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Colaço, Daniel Freitas</creator><creator>de Alexandria, Auzuir R.</creator><creator>Cortez, Paulo César</creator><creator>Frota, João Batista B.</creator><creator>Lima, José Nunes de</creator><creator>de Albuquerque, Victor Hugo C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20101101</creationdate><title>Development, application and evaluation of a computational tool for management high voltage break disconnector based on self-organizing maps and image processing</title><author>Colaço, Daniel Freitas ; de Alexandria, Auzuir R. ; Cortez, Paulo César ; Frota, João Batista B. ; Lima, José Nunes de ; de Albuquerque, Victor Hugo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3a353b200bc0bf320fdeb05cd254e95ea24ff96d10b12fed44379563ff10033f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Break disconnectors</topic><topic>Breaking</topic><topic>Computer simulation</topic><topic>Disengaging</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>High voltages</topic><topic>Maintenance</topic><topic>Management</topic><topic>Power networks and lines</topic><topic>SOM artificial neural network</topic><topic>Substations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colaço, Daniel Freitas</creatorcontrib><creatorcontrib>de Alexandria, Auzuir R.</creatorcontrib><creatorcontrib>Cortez, Paulo César</creatorcontrib><creatorcontrib>Frota, João Batista B.</creatorcontrib><creatorcontrib>Lima, José Nunes de</creatorcontrib><creatorcontrib>de Albuquerque, Victor Hugo C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colaço, Daniel Freitas</au><au>de Alexandria, Auzuir R.</au><au>Cortez, Paulo César</au><au>Frota, João Batista B.</au><au>Lima, José Nunes de</au><au>de Albuquerque, Victor Hugo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development, application and evaluation of a computational tool for management high voltage break disconnector based on self-organizing maps and image processing</atitle><jtitle>Energy conversion and management</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>51</volume><issue>11</issue><spage>2279</spage><epage>2284</epage><pages>2279-2284</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>This work has the objective of developing, analysing and applying a new tool for management the status of break disconnectors in high voltage substations from digital images. This tool uses a non-supervised kind of artificial neural network using the Kohonen learning algorithm, known as a self-organizing maps. In order to develop the proposed tool, C/C++ programming language, provided with easily used interfaces, is used. In order to obtain the results, three environments are considered: one for laboratory simulation and two pilot projects installed in the Fortaleza II/CHESF substation. These pilots are used for 230 kV EV-2000 type and 500 kV semi-pantographic type break disconnector management tests. The results prove the developed system’s efficiency, because it is able to detect 100% of open and closed identification situations. However, the neural network utilised for management break disconnectors has become suitable for installation in high voltage substations in order to support the maintenance team in safely handling these disconnectors.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2010.03.023</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2010-11, Vol.51 (11), p.2279-2284
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_753686809
source Elsevier ScienceDirect Journals
subjects Applied sciences
Break disconnectors
Breaking
Computer simulation
Disengaging
Electrical engineering. Electrical power engineering
Electrical power engineering
Exact sciences and technology
High voltages
Maintenance
Management
Power networks and lines
SOM artificial neural network
Substations
title Development, application and evaluation of a computational tool for management high voltage break disconnector based on self-organizing maps and image processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development,%20application%20and%20evaluation%20of%20a%20computational%20tool%20for%20management%20high%20voltage%20break%20disconnector%20based%20on%20self-organizing%20maps%20and%20image%20processing&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Cola%C3%A7o,%20Daniel%20Freitas&rft.date=2010-11-01&rft.volume=51&rft.issue=11&rft.spage=2279&rft.epage=2284&rft.pages=2279-2284&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2010.03.023&rft_dat=%3Cproquest_cross%3E753686809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671330852&rft_id=info:pmid/&rft_els_id=S0196890410001378&rfr_iscdi=true