Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions

Stable Fe isotope fractionations were investigated during exposure of hematite to aqueous Fe(II) under conditions of variable Fe(II)/hematite ratios, the presence/absence of dissolved Si, and neutral versus alkaline pH. When Fe(II) undergoes electron transfer to hematite, Fe(II) is initially oxidize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2010-08, Vol.74 (15), p.4249-4265
Hauptverfasser: Wu, Lingling, Beard, Brian L., Roden, Eric E., Kennedy, Christopher B., Johnson, Clark M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4265
container_issue 15
container_start_page 4249
container_title Geochimica et cosmochimica acta
container_volume 74
creator Wu, Lingling
Beard, Brian L.
Roden, Eric E.
Kennedy, Christopher B.
Johnson, Clark M.
description Stable Fe isotope fractionations were investigated during exposure of hematite to aqueous Fe(II) under conditions of variable Fe(II)/hematite ratios, the presence/absence of dissolved Si, and neutral versus alkaline pH. When Fe(II) undergoes electron transfer to hematite, Fe(II) is initially oxidized to Fe(III), and structural Fe(III) on the hematite surface is reduced to Fe(II). During this redox reaction, the newly formed reactive Fe(III) layer becomes enriched in heavy Fe isotopes and light Fe isotopes partition into aqueous and sorbed Fe(II). Our results indicate that in most cases the reactive Fe(III) that undergoes isotopic exchange accounts for less than one octahedral layer on the hematite surface. With higher Fe(II)/hematite molar ratios, and the presence of dissolved Si at alkaline pH, stable Fe isotope fractionations move away from those expected for equilibrium between aqueous Fe(II) and hematite, towards those expected for aqueous Fe(II) and goethite. These results point to formation of new phases on the hematite surface as a result of distortion of Fe–O bonds and Si polymerization at high pH. Our findings demonstrate how stable Fe isotope fractionations can be used to investigate changes in surface Fe phases during exposure of Fe(III) oxides to aqueous Fe(II) under different environmental conditions. These results confirm the coupled electron and atom exchange mechanism proposed to explain Fe isotope fractionation during dissimilatory iron reduction (DIR). Although abiologic Fe(II) aq – oxide interaction will produce low δ 56Fe values for Fe(II) aq, similar to that produced by Fe(II) oxidation, only small quantities of low- δ 56Fe Fe(II) aq are formed by these processes. In contrast, DIR, which continually exposes new surface Fe(III) atoms during reduction, as well as production of Fe(II), remains the most efficient mechanism for generating large quantities of low- δ 56Fe aqueous Fe(II) in many natural systems.
doi_str_mv 10.1016/j.gca.2010.04.060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753686356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703710002450</els_id><sourcerecordid>753686356</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-ebd2ddde524c6cad76abb00f8043d029528c37ddaa1893a008f465d20e17d03b3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGzZgCHhbMd2KiZUUahUiQEYmCzHvkCqNim2g9S3x1E7s5x10veffn-EXFMoKFB5vy6-rCkYpB3KAiSckAmtFMtngvNTMoEE5Qq4OicXIawBQAkBE_L5Fk29wWyBWRv62O8wa7yxse07M46Q7XzvBosuq_eZ-RmwH0Kib5fLu_wbtwmKmIXBN8amE13EYzpckrPGbAJeHd8p-Vg8vc9f8tXr83L-uMoNFyzmWDvmnEPBSiutcUqaugZoKii5AzYTrLJcOWcMrWbcAFRNKYVjgFQ54DWfkpvD3VQ01QtRb9tgcbMx3dhVK8FlJbmQiaQH0vo-BI-N3vl2a_xeU9CjRb3WyaIeLWoodbKYMg-HDKYv_LbodbAtdslH69FG7fr2n_QfdWB7LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753686356</pqid></control><display><type>article</type><title>Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wu, Lingling ; Beard, Brian L. ; Roden, Eric E. ; Kennedy, Christopher B. ; Johnson, Clark M.</creator><creatorcontrib>Wu, Lingling ; Beard, Brian L. ; Roden, Eric E. ; Kennedy, Christopher B. ; Johnson, Clark M.</creatorcontrib><description>Stable Fe isotope fractionations were investigated during exposure of hematite to aqueous Fe(II) under conditions of variable Fe(II)/hematite ratios, the presence/absence of dissolved Si, and neutral versus alkaline pH. When Fe(II) undergoes electron transfer to hematite, Fe(II) is initially oxidized to Fe(III), and structural Fe(III) on the hematite surface is reduced to Fe(II). During this redox reaction, the newly formed reactive Fe(III) layer becomes enriched in heavy Fe isotopes and light Fe isotopes partition into aqueous and sorbed Fe(II). Our results indicate that in most cases the reactive Fe(III) that undergoes isotopic exchange accounts for less than one octahedral layer on the hematite surface. With higher Fe(II)/hematite molar ratios, and the presence of dissolved Si at alkaline pH, stable Fe isotope fractionations move away from those expected for equilibrium between aqueous Fe(II) and hematite, towards those expected for aqueous Fe(II) and goethite. These results point to formation of new phases on the hematite surface as a result of distortion of Fe–O bonds and Si polymerization at high pH. Our findings demonstrate how stable Fe isotope fractionations can be used to investigate changes in surface Fe phases during exposure of Fe(III) oxides to aqueous Fe(II) under different environmental conditions. These results confirm the coupled electron and atom exchange mechanism proposed to explain Fe isotope fractionation during dissimilatory iron reduction (DIR). Although abiologic Fe(II) aq – oxide interaction will produce low δ 56Fe values for Fe(II) aq, similar to that produced by Fe(II) oxidation, only small quantities of low- δ 56Fe Fe(II) aq are formed by these processes. In contrast, DIR, which continually exposes new surface Fe(III) atoms during reduction, as well as production of Fe(II), remains the most efficient mechanism for generating large quantities of low- δ 56Fe aqueous Fe(II) in many natural systems.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2010.04.060</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dissolution ; Distillation ; Hematite ; Iron ; Isotopes ; Reduction ; Silicon</subject><ispartof>Geochimica et cosmochimica acta, 2010-08, Vol.74 (15), p.4249-4265</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a352t-ebd2ddde524c6cad76abb00f8043d029528c37ddaa1893a008f465d20e17d03b3</citedby><cites>FETCH-LOGICAL-a352t-ebd2ddde524c6cad76abb00f8043d029528c37ddaa1893a008f465d20e17d03b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gca.2010.04.060$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wu, Lingling</creatorcontrib><creatorcontrib>Beard, Brian L.</creatorcontrib><creatorcontrib>Roden, Eric E.</creatorcontrib><creatorcontrib>Kennedy, Christopher B.</creatorcontrib><creatorcontrib>Johnson, Clark M.</creatorcontrib><title>Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions</title><title>Geochimica et cosmochimica acta</title><description>Stable Fe isotope fractionations were investigated during exposure of hematite to aqueous Fe(II) under conditions of variable Fe(II)/hematite ratios, the presence/absence of dissolved Si, and neutral versus alkaline pH. When Fe(II) undergoes electron transfer to hematite, Fe(II) is initially oxidized to Fe(III), and structural Fe(III) on the hematite surface is reduced to Fe(II). During this redox reaction, the newly formed reactive Fe(III) layer becomes enriched in heavy Fe isotopes and light Fe isotopes partition into aqueous and sorbed Fe(II). Our results indicate that in most cases the reactive Fe(III) that undergoes isotopic exchange accounts for less than one octahedral layer on the hematite surface. With higher Fe(II)/hematite molar ratios, and the presence of dissolved Si at alkaline pH, stable Fe isotope fractionations move away from those expected for equilibrium between aqueous Fe(II) and hematite, towards those expected for aqueous Fe(II) and goethite. These results point to formation of new phases on the hematite surface as a result of distortion of Fe–O bonds and Si polymerization at high pH. Our findings demonstrate how stable Fe isotope fractionations can be used to investigate changes in surface Fe phases during exposure of Fe(III) oxides to aqueous Fe(II) under different environmental conditions. These results confirm the coupled electron and atom exchange mechanism proposed to explain Fe isotope fractionation during dissimilatory iron reduction (DIR). Although abiologic Fe(II) aq – oxide interaction will produce low δ 56Fe values for Fe(II) aq, similar to that produced by Fe(II) oxidation, only small quantities of low- δ 56Fe Fe(II) aq are formed by these processes. In contrast, DIR, which continually exposes new surface Fe(III) atoms during reduction, as well as production of Fe(II), remains the most efficient mechanism for generating large quantities of low- δ 56Fe aqueous Fe(II) in many natural systems.</description><subject>Dissolution</subject><subject>Distillation</subject><subject>Hematite</subject><subject>Iron</subject><subject>Isotopes</subject><subject>Reduction</subject><subject>Silicon</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAGzZgCHhbMd2KiZUUahUiQEYmCzHvkCqNim2g9S3x1E7s5x10veffn-EXFMoKFB5vy6-rCkYpB3KAiSckAmtFMtngvNTMoEE5Qq4OicXIawBQAkBE_L5Fk29wWyBWRv62O8wa7yxse07M46Q7XzvBosuq_eZ-RmwH0Kib5fLu_wbtwmKmIXBN8amE13EYzpckrPGbAJeHd8p-Vg8vc9f8tXr83L-uMoNFyzmWDvmnEPBSiutcUqaugZoKii5AzYTrLJcOWcMrWbcAFRNKYVjgFQ54DWfkpvD3VQ01QtRb9tgcbMx3dhVK8FlJbmQiaQH0vo-BI-N3vl2a_xeU9CjRb3WyaIeLWoodbKYMg-HDKYv_LbodbAtdslH69FG7fr2n_QfdWB7LA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Wu, Lingling</creator><creator>Beard, Brian L.</creator><creator>Roden, Eric E.</creator><creator>Kennedy, Christopher B.</creator><creator>Johnson, Clark M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100801</creationdate><title>Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions</title><author>Wu, Lingling ; Beard, Brian L. ; Roden, Eric E. ; Kennedy, Christopher B. ; Johnson, Clark M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-ebd2ddde524c6cad76abb00f8043d029528c37ddaa1893a008f465d20e17d03b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Dissolution</topic><topic>Distillation</topic><topic>Hematite</topic><topic>Iron</topic><topic>Isotopes</topic><topic>Reduction</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lingling</creatorcontrib><creatorcontrib>Beard, Brian L.</creatorcontrib><creatorcontrib>Roden, Eric E.</creatorcontrib><creatorcontrib>Kennedy, Christopher B.</creatorcontrib><creatorcontrib>Johnson, Clark M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Lingling</au><au>Beard, Brian L.</au><au>Roden, Eric E.</au><au>Kennedy, Christopher B.</au><au>Johnson, Clark M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>74</volume><issue>15</issue><spage>4249</spage><epage>4265</epage><pages>4249-4265</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Stable Fe isotope fractionations were investigated during exposure of hematite to aqueous Fe(II) under conditions of variable Fe(II)/hematite ratios, the presence/absence of dissolved Si, and neutral versus alkaline pH. When Fe(II) undergoes electron transfer to hematite, Fe(II) is initially oxidized to Fe(III), and structural Fe(III) on the hematite surface is reduced to Fe(II). During this redox reaction, the newly formed reactive Fe(III) layer becomes enriched in heavy Fe isotopes and light Fe isotopes partition into aqueous and sorbed Fe(II). Our results indicate that in most cases the reactive Fe(III) that undergoes isotopic exchange accounts for less than one octahedral layer on the hematite surface. With higher Fe(II)/hematite molar ratios, and the presence of dissolved Si at alkaline pH, stable Fe isotope fractionations move away from those expected for equilibrium between aqueous Fe(II) and hematite, towards those expected for aqueous Fe(II) and goethite. These results point to formation of new phases on the hematite surface as a result of distortion of Fe–O bonds and Si polymerization at high pH. Our findings demonstrate how stable Fe isotope fractionations can be used to investigate changes in surface Fe phases during exposure of Fe(III) oxides to aqueous Fe(II) under different environmental conditions. These results confirm the coupled electron and atom exchange mechanism proposed to explain Fe isotope fractionation during dissimilatory iron reduction (DIR). Although abiologic Fe(II) aq – oxide interaction will produce low δ 56Fe values for Fe(II) aq, similar to that produced by Fe(II) oxidation, only small quantities of low- δ 56Fe Fe(II) aq are formed by these processes. In contrast, DIR, which continually exposes new surface Fe(III) atoms during reduction, as well as production of Fe(II), remains the most efficient mechanism for generating large quantities of low- δ 56Fe aqueous Fe(II) in many natural systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2010.04.060</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2010-08, Vol.74 (15), p.4249-4265
issn 0016-7037
1872-9533
language eng
recordid cdi_proquest_miscellaneous_753686356
source ScienceDirect Journals (5 years ago - present)
subjects Dissolution
Distillation
Hematite
Iron
Isotopes
Reduction
Silicon
title Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Fe%20isotope%20fractionations%20produced%20by%20aqueous%20Fe(II)-hematite%20surface%20interactions&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Wu,%20Lingling&rft.date=2010-08-01&rft.volume=74&rft.issue=15&rft.spage=4249&rft.epage=4265&rft.pages=4249-4265&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2010.04.060&rft_dat=%3Cproquest_cross%3E753686356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753686356&rft_id=info:pmid/&rft_els_id=S0016703710002450&rfr_iscdi=true