High performance solid oxide fuel cells based on tri-layer yttria-stabilized zirconia by low temperature sintering process

Performance of solid oxide fuel cells (SOFCs) depends critically on the composition and microstructure of the electrodes. It is fabricated a dense yttria-stabilized zirconia (YSZ) electrolyte layer sandwiched between two porous YSZ layers at low temperature. The advantages of this structure include...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2010-11, Vol.195 (21), p.7230-7233
Hauptverfasser: Liu, Ze, Zheng, Zi-wei, Han, Min-fang, Liu, Mei-lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7233
container_issue 21
container_start_page 7230
container_title Journal of power sources
container_volume 195
creator Liu, Ze
Zheng, Zi-wei
Han, Min-fang
Liu, Mei-lin
description Performance of solid oxide fuel cells (SOFCs) depends critically on the composition and microstructure of the electrodes. It is fabricated a dense yttria-stabilized zirconia (YSZ) electrolyte layer sandwiched between two porous YSZ layers at low temperature. The advantages of this structure include excellent structural stability and unique flexibility for evaluation of new electrode materials for SOFC applications, which would be difficult or impossible to be evaluated using conventional cell fabrication techniques because of incompatibility with YSZ under processing conditions. The porosity of porous YSZ increases from 65.8% to 68.6% as the firing temperature decreased from 1350 to 1200 °C. The open cell voltages of the cells based on the tri-layers of YSZ, co-fired using a two-step sintering at 1200 °C, are above 1.0 V at 700–800 °C, and the peak power densities of cells infiltrated LSCF and Pd-SDC electrodes are about 525, 733, and 935 mW cm −2 at 700, 750, and 800 °C, respectively.
doi_str_mv 10.1016/j.jpowsour.2010.05.062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753686016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877531000933X</els_id><sourcerecordid>1777123346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-36ce9ff7b81b4628072bbdcbf13a76d8d184403c414bd261f1fe11dbe90e0e203</originalsourceid><addsrcrecordid>eNqFkUuPFCEUhYnRxHb0Lxg2RjfVw6ugZqeZqGMyiRtdEx6XkQ5dtEA50_3rpdKjS11BLt89J5yD0GtKtpRQebnb7g75vualbBnpQzJuiWRP0IZOig9MjeNTtCFcTYNSI3-OXtS6I4RQqsgGnW7i3Q98gBJy2ZvZAa45RY_zQ_SAwwIJO0ipYmsq9PGMW4lDMkco-Nj63Qy1GRtTPPXnUywuz9Fge8Qp3-MG-y5t2lK6bpwblDjf4UPJDmp9iZ4Fkyq8ejwv0PdPH79d3wy3Xz9_uf5wO7iRijZw6eAqBGUnaoVkE1HMWu9soNwo6SdPJyEId4IK65mkgQag1Fu4IkCAEX6B3p51u-_PBWrT-1jXT5kZ8lJ1D0VOsifZyXf_JKlSijLOxYrKM-pKrrVA0IcS96YcNSV6rUXv9J9a9FqLJqPutfTFN48epjqTQumhx_p3m3EyCjGu3PszBz2aXxGKri5CL8jHAq5pn-P_rH4DH0Cp2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777123346</pqid></control><display><type>article</type><title>High performance solid oxide fuel cells based on tri-layer yttria-stabilized zirconia by low temperature sintering process</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Ze ; Zheng, Zi-wei ; Han, Min-fang ; Liu, Mei-lin</creator><creatorcontrib>Liu, Ze ; Zheng, Zi-wei ; Han, Min-fang ; Liu, Mei-lin</creatorcontrib><description>Performance of solid oxide fuel cells (SOFCs) depends critically on the composition and microstructure of the electrodes. It is fabricated a dense yttria-stabilized zirconia (YSZ) electrolyte layer sandwiched between two porous YSZ layers at low temperature. The advantages of this structure include excellent structural stability and unique flexibility for evaluation of new electrode materials for SOFC applications, which would be difficult or impossible to be evaluated using conventional cell fabrication techniques because of incompatibility with YSZ under processing conditions. The porosity of porous YSZ increases from 65.8% to 68.6% as the firing temperature decreased from 1350 to 1200 °C. The open cell voltages of the cells based on the tri-layers of YSZ, co-fired using a two-step sintering at 1200 °C, are above 1.0 V at 700–800 °C, and the peak power densities of cells infiltrated LSCF and Pd-SDC electrodes are about 525, 733, and 935 mW cm −2 at 700, 750, and 800 °C, respectively.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.05.062</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Density ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Electrolytic cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Firing ; Fuel cells ; Infiltration ; Palladium ; Sintering (powder metallurgy) ; Solid oxide fuel cells ; Tape casting ; Tri-layer yttria-stabilized zirconia ; Two-step sintering ; Yttria stabilized zirconia</subject><ispartof>Journal of power sources, 2010-11, Vol.195 (21), p.7230-7233</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-36ce9ff7b81b4628072bbdcbf13a76d8d184403c414bd261f1fe11dbe90e0e203</citedby><cites>FETCH-LOGICAL-c514t-36ce9ff7b81b4628072bbdcbf13a76d8d184403c414bd261f1fe11dbe90e0e203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2010.05.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23054452$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ze</creatorcontrib><creatorcontrib>Zheng, Zi-wei</creatorcontrib><creatorcontrib>Han, Min-fang</creatorcontrib><creatorcontrib>Liu, Mei-lin</creatorcontrib><title>High performance solid oxide fuel cells based on tri-layer yttria-stabilized zirconia by low temperature sintering process</title><title>Journal of power sources</title><description>Performance of solid oxide fuel cells (SOFCs) depends critically on the composition and microstructure of the electrodes. It is fabricated a dense yttria-stabilized zirconia (YSZ) electrolyte layer sandwiched between two porous YSZ layers at low temperature. The advantages of this structure include excellent structural stability and unique flexibility for evaluation of new electrode materials for SOFC applications, which would be difficult or impossible to be evaluated using conventional cell fabrication techniques because of incompatibility with YSZ under processing conditions. The porosity of porous YSZ increases from 65.8% to 68.6% as the firing temperature decreased from 1350 to 1200 °C. The open cell voltages of the cells based on the tri-layers of YSZ, co-fired using a two-step sintering at 1200 °C, are above 1.0 V at 700–800 °C, and the peak power densities of cells infiltrated LSCF and Pd-SDC electrodes are about 525, 733, and 935 mW cm −2 at 700, 750, and 800 °C, respectively.</description><subject>Applied sciences</subject><subject>Density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Firing</subject><subject>Fuel cells</subject><subject>Infiltration</subject><subject>Palladium</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid oxide fuel cells</subject><subject>Tape casting</subject><subject>Tri-layer yttria-stabilized zirconia</subject><subject>Two-step sintering</subject><subject>Yttria stabilized zirconia</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUuPFCEUhYnRxHb0Lxg2RjfVw6ugZqeZqGMyiRtdEx6XkQ5dtEA50_3rpdKjS11BLt89J5yD0GtKtpRQebnb7g75vualbBnpQzJuiWRP0IZOig9MjeNTtCFcTYNSI3-OXtS6I4RQqsgGnW7i3Q98gBJy2ZvZAa45RY_zQ_SAwwIJO0ipYmsq9PGMW4lDMkco-Nj63Qy1GRtTPPXnUywuz9Fge8Qp3-MG-y5t2lK6bpwblDjf4UPJDmp9iZ4Fkyq8ejwv0PdPH79d3wy3Xz9_uf5wO7iRijZw6eAqBGUnaoVkE1HMWu9soNwo6SdPJyEId4IK65mkgQag1Fu4IkCAEX6B3p51u-_PBWrT-1jXT5kZ8lJ1D0VOsifZyXf_JKlSijLOxYrKM-pKrrVA0IcS96YcNSV6rUXv9J9a9FqLJqPutfTFN48epjqTQumhx_p3m3EyCjGu3PszBz2aXxGKri5CL8jHAq5pn-P_rH4DH0Cp2A</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Liu, Ze</creator><creator>Zheng, Zi-wei</creator><creator>Han, Min-fang</creator><creator>Liu, Mei-lin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20101101</creationdate><title>High performance solid oxide fuel cells based on tri-layer yttria-stabilized zirconia by low temperature sintering process</title><author>Liu, Ze ; Zheng, Zi-wei ; Han, Min-fang ; Liu, Mei-lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-36ce9ff7b81b4628072bbdcbf13a76d8d184403c414bd261f1fe11dbe90e0e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Firing</topic><topic>Fuel cells</topic><topic>Infiltration</topic><topic>Palladium</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid oxide fuel cells</topic><topic>Tape casting</topic><topic>Tri-layer yttria-stabilized zirconia</topic><topic>Two-step sintering</topic><topic>Yttria stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ze</creatorcontrib><creatorcontrib>Zheng, Zi-wei</creatorcontrib><creatorcontrib>Han, Min-fang</creatorcontrib><creatorcontrib>Liu, Mei-lin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ze</au><au>Zheng, Zi-wei</au><au>Han, Min-fang</au><au>Liu, Mei-lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High performance solid oxide fuel cells based on tri-layer yttria-stabilized zirconia by low temperature sintering process</atitle><jtitle>Journal of power sources</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>195</volume><issue>21</issue><spage>7230</spage><epage>7233</epage><pages>7230-7233</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Performance of solid oxide fuel cells (SOFCs) depends critically on the composition and microstructure of the electrodes. It is fabricated a dense yttria-stabilized zirconia (YSZ) electrolyte layer sandwiched between two porous YSZ layers at low temperature. The advantages of this structure include excellent structural stability and unique flexibility for evaluation of new electrode materials for SOFC applications, which would be difficult or impossible to be evaluated using conventional cell fabrication techniques because of incompatibility with YSZ under processing conditions. The porosity of porous YSZ increases from 65.8% to 68.6% as the firing temperature decreased from 1350 to 1200 °C. The open cell voltages of the cells based on the tri-layers of YSZ, co-fired using a two-step sintering at 1200 °C, are above 1.0 V at 700–800 °C, and the peak power densities of cells infiltrated LSCF and Pd-SDC electrodes are about 525, 733, and 935 mW cm −2 at 700, 750, and 800 °C, respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.05.062</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2010-11, Vol.195 (21), p.7230-7233
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_753686016
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Density
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrodes
Electrolytic cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Firing
Fuel cells
Infiltration
Palladium
Sintering (powder metallurgy)
Solid oxide fuel cells
Tape casting
Tri-layer yttria-stabilized zirconia
Two-step sintering
Yttria stabilized zirconia
title High performance solid oxide fuel cells based on tri-layer yttria-stabilized zirconia by low temperature sintering process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20performance%20solid%20oxide%20fuel%20cells%20based%20on%20tri-layer%20yttria-stabilized%20zirconia%20by%20low%20temperature%20sintering%20process&rft.jtitle=Journal%20of%20power%20sources&rft.au=Liu,%20Ze&rft.date=2010-11-01&rft.volume=195&rft.issue=21&rft.spage=7230&rft.epage=7233&rft.pages=7230-7233&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.05.062&rft_dat=%3Cproquest_cross%3E1777123346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777123346&rft_id=info:pmid/&rft_els_id=S037877531000933X&rfr_iscdi=true