Effect of nickel–phosphorus interactions on structural integrity of anode-supported solid oxide fuel cells
An integrated experimental/modeling approach was utilized to assess the structural integrity of Ni–yttria-stabilized zirconia (YSZ) porous anode supports during the solid oxide fuel cell (SOFC) operation on coal gas containing trace amounts of phosphorus impurities. Phosphorus was chosen as a typica...
Gespeichert in:
Veröffentlicht in: | Journal of Power Sources, 195(21):7140-7145 195(21):7140-7145, 2010-11, Vol.195 (21), p.7140-7145 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7145 |
---|---|
container_issue | 21 |
container_start_page | 7140 |
container_title | Journal of Power Sources, 195(21):7140-7145 |
container_volume | 195 |
creator | Liu, Wenning Sun, Xin Pederson, Larry R. Marina, Olga A. Khaleel, Moe A. |
description | An integrated experimental/modeling approach was utilized to assess the structural integrity of Ni–yttria-stabilized zirconia (YSZ) porous anode supports during the solid oxide fuel cell (SOFC) operation on coal gas containing trace amounts of phosphorus impurities. Phosphorus was chosen as a typical impurity exhibiting strong interactions with the nickel followed by second phase formation. Tests were performed using Ni–YSZ anode-supported button cells exposed to 0.5–10
ppm of phosphine in synthetic coal gas at 700–800
°C. The extent of Ni–P interactions was determined by a post-test scanning electron microscopy (SEM) analysis. Severe damage to the anode support due to nickel phosphide phase formation and extensive crystal coalescence was revealed, resulting in electric percolation loss. The subsequent finite element stress analyses were conducted using the actual anode support microstructures to assist in degradation mechanism explanation. Volume expansion induced by the Ni phase alteration was found to produce high stress levels such that local failure of the Ni–YSZ anode became possible under the operating conditions. |
doi_str_mv | 10.1016/j.jpowsour.2010.06.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_753685118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310009985</els_id><sourcerecordid>1671330831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-5c4e1109eef61db0b09ca8ab3ec3252ba14dc7ebf93fe36d23af5a6ca63843953</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhSMEEpfCKyCzQLDJxY5jJ9mBqvIjVWIDa8uxx9QX1w4ep9Ad78Ab9knqcAtLWFiWPN_xzJnTNE8Z3TPK5KvD_rCk75jWvO9ofaRyT5m41-zYOPC2G4S43-woH8Z2GAR_2DxCPFBKGRvorglnzoEpJDkSvfkK4ebnr-UiYT15ReJjgaxN8SkiSZFgyaspa9bhd-lL9uV60-qYLLS4LkvKBSzBFLwl6Ye3QNwKgRgIAR83D5wOCE_u7pPm89uzT6fv2_OP7z6cvjlvTc95aYXpgTE6ATjJ7ExnOhk96pmD4Z3oZs16awaY3cQdcGk7rp3Q0mjJx55Pgp80z47_JixeofEFzIVJMVanahr7aZKVeXFklpy-rYBFXXrcptQR0oqqrkqOgrGxki__STI5MM7pyFlF5RE1OSFmcGrJ_lLna8Wo2sJSB_UnLLWFpahUNawqfH7XQ6PRwWUdjce_6o5T0fd8m-X1kYO6visPeXMH0YD1eTNnk_9fq1vKwrH9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671330831</pqid></control><display><type>article</type><title>Effect of nickel–phosphorus interactions on structural integrity of anode-supported solid oxide fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Wenning ; Sun, Xin ; Pederson, Larry R. ; Marina, Olga A. ; Khaleel, Moe A.</creator><creatorcontrib>Liu, Wenning ; Sun, Xin ; Pederson, Larry R. ; Marina, Olga A. ; Khaleel, Moe A. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>An integrated experimental/modeling approach was utilized to assess the structural integrity of Ni–yttria-stabilized zirconia (YSZ) porous anode supports during the solid oxide fuel cell (SOFC) operation on coal gas containing trace amounts of phosphorus impurities. Phosphorus was chosen as a typical impurity exhibiting strong interactions with the nickel followed by second phase formation. Tests were performed using Ni–YSZ anode-supported button cells exposed to 0.5–10
ppm of phosphine in synthetic coal gas at 700–800
°C. The extent of Ni–P interactions was determined by a post-test scanning electron microscopy (SEM) analysis. Severe damage to the anode support due to nickel phosphide phase formation and extensive crystal coalescence was revealed, resulting in electric percolation loss. The subsequent finite element stress analyses were conducted using the actual anode support microstructures to assist in degradation mechanism explanation. Volume expansion induced by the Ni phase alteration was found to produce high stress levels such that local failure of the Ni–YSZ anode became possible under the operating conditions.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.06.015</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anodes ; Applied sciences ; Coal gas ; Coal gas impurity ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Impurities ; Mechanical properties ; Ni-YSZ anode degradation ; Nickel ; Phosphorus ; Phosphorus–nickel interaction ; Scanning electron microscopy ; SOFC structural integrity ; Solid oxide fuel cells ; Structural integrity</subject><ispartof>Journal of Power Sources, 195(21):7140-7145, 2010-11, Vol.195 (21), p.7140-7145</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-5c4e1109eef61db0b09ca8ab3ec3252ba14dc7ebf93fe36d23af5a6ca63843953</citedby><cites>FETCH-LOGICAL-c433t-5c4e1109eef61db0b09ca8ab3ec3252ba14dc7ebf93fe36d23af5a6ca63843953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775310009985$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23054438$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/984996$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Wenning</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Pederson, Larry R.</creatorcontrib><creatorcontrib>Marina, Olga A.</creatorcontrib><creatorcontrib>Khaleel, Moe A.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Effect of nickel–phosphorus interactions on structural integrity of anode-supported solid oxide fuel cells</title><title>Journal of Power Sources, 195(21):7140-7145</title><description>An integrated experimental/modeling approach was utilized to assess the structural integrity of Ni–yttria-stabilized zirconia (YSZ) porous anode supports during the solid oxide fuel cell (SOFC) operation on coal gas containing trace amounts of phosphorus impurities. Phosphorus was chosen as a typical impurity exhibiting strong interactions with the nickel followed by second phase formation. Tests were performed using Ni–YSZ anode-supported button cells exposed to 0.5–10
ppm of phosphine in synthetic coal gas at 700–800
°C. The extent of Ni–P interactions was determined by a post-test scanning electron microscopy (SEM) analysis. Severe damage to the anode support due to nickel phosphide phase formation and extensive crystal coalescence was revealed, resulting in electric percolation loss. The subsequent finite element stress analyses were conducted using the actual anode support microstructures to assist in degradation mechanism explanation. Volume expansion induced by the Ni phase alteration was found to produce high stress levels such that local failure of the Ni–YSZ anode became possible under the operating conditions.</description><subject>Anodes</subject><subject>Applied sciences</subject><subject>Coal gas</subject><subject>Coal gas impurity</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Impurities</subject><subject>Mechanical properties</subject><subject>Ni-YSZ anode degradation</subject><subject>Nickel</subject><subject>Phosphorus</subject><subject>Phosphorus–nickel interaction</subject><subject>Scanning electron microscopy</subject><subject>SOFC structural integrity</subject><subject>Solid oxide fuel cells</subject><subject>Structural integrity</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1TAQhSMEEpfCKyCzQLDJxY5jJ9mBqvIjVWIDa8uxx9QX1w4ep9Ad78Ab9knqcAtLWFiWPN_xzJnTNE8Z3TPK5KvD_rCk75jWvO9ofaRyT5m41-zYOPC2G4S43-woH8Z2GAR_2DxCPFBKGRvorglnzoEpJDkSvfkK4ebnr-UiYT15ReJjgaxN8SkiSZFgyaspa9bhd-lL9uV60-qYLLS4LkvKBSzBFLwl6Ye3QNwKgRgIAR83D5wOCE_u7pPm89uzT6fv2_OP7z6cvjlvTc95aYXpgTE6ATjJ7ExnOhk96pmD4Z3oZs16awaY3cQdcGk7rp3Q0mjJx55Pgp80z47_JixeofEFzIVJMVanahr7aZKVeXFklpy-rYBFXXrcptQR0oqqrkqOgrGxki__STI5MM7pyFlF5RE1OSFmcGrJ_lLna8Wo2sJSB_UnLLWFpahUNawqfH7XQ6PRwWUdjce_6o5T0fd8m-X1kYO6visPeXMH0YD1eTNnk_9fq1vKwrH9</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Liu, Wenning</creator><creator>Sun, Xin</creator><creator>Pederson, Larry R.</creator><creator>Marina, Olga A.</creator><creator>Khaleel, Moe A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20101101</creationdate><title>Effect of nickel–phosphorus interactions on structural integrity of anode-supported solid oxide fuel cells</title><author>Liu, Wenning ; Sun, Xin ; Pederson, Larry R. ; Marina, Olga A. ; Khaleel, Moe A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-5c4e1109eef61db0b09ca8ab3ec3252ba14dc7ebf93fe36d23af5a6ca63843953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anodes</topic><topic>Applied sciences</topic><topic>Coal gas</topic><topic>Coal gas impurity</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Impurities</topic><topic>Mechanical properties</topic><topic>Ni-YSZ anode degradation</topic><topic>Nickel</topic><topic>Phosphorus</topic><topic>Phosphorus–nickel interaction</topic><topic>Scanning electron microscopy</topic><topic>SOFC structural integrity</topic><topic>Solid oxide fuel cells</topic><topic>Structural integrity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenning</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Pederson, Larry R.</creatorcontrib><creatorcontrib>Marina, Olga A.</creatorcontrib><creatorcontrib>Khaleel, Moe A.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of Power Sources, 195(21):7140-7145</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenning</au><au>Sun, Xin</au><au>Pederson, Larry R.</au><au>Marina, Olga A.</au><au>Khaleel, Moe A.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of nickel–phosphorus interactions on structural integrity of anode-supported solid oxide fuel cells</atitle><jtitle>Journal of Power Sources, 195(21):7140-7145</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>195</volume><issue>21</issue><spage>7140</spage><epage>7145</epage><pages>7140-7145</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>An integrated experimental/modeling approach was utilized to assess the structural integrity of Ni–yttria-stabilized zirconia (YSZ) porous anode supports during the solid oxide fuel cell (SOFC) operation on coal gas containing trace amounts of phosphorus impurities. Phosphorus was chosen as a typical impurity exhibiting strong interactions with the nickel followed by second phase formation. Tests were performed using Ni–YSZ anode-supported button cells exposed to 0.5–10
ppm of phosphine in synthetic coal gas at 700–800
°C. The extent of Ni–P interactions was determined by a post-test scanning electron microscopy (SEM) analysis. Severe damage to the anode support due to nickel phosphide phase formation and extensive crystal coalescence was revealed, resulting in electric percolation loss. The subsequent finite element stress analyses were conducted using the actual anode support microstructures to assist in degradation mechanism explanation. Volume expansion induced by the Ni phase alteration was found to produce high stress levels such that local failure of the Ni–YSZ anode became possible under the operating conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.06.015</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of Power Sources, 195(21):7140-7145, 2010-11, Vol.195 (21), p.7140-7145 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_753685118 |
source | Elsevier ScienceDirect Journals |
subjects | Anodes Applied sciences Coal gas Coal gas impurity Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Impurities Mechanical properties Ni-YSZ anode degradation Nickel Phosphorus Phosphorus–nickel interaction Scanning electron microscopy SOFC structural integrity Solid oxide fuel cells Structural integrity |
title | Effect of nickel–phosphorus interactions on structural integrity of anode-supported solid oxide fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20nickel%E2%80%93phosphorus%20interactions%20on%20structural%20integrity%20of%20anode-supported%20solid%20oxide%20fuel%20cells&rft.jtitle=Journal%20of%20Power%20Sources,%20195(21):7140-7145&rft.au=Liu,%20Wenning&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2010-11-01&rft.volume=195&rft.issue=21&rft.spage=7140&rft.epage=7145&rft.pages=7140-7145&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.06.015&rft_dat=%3Cproquest_osti_%3E1671330831%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671330831&rft_id=info:pmid/&rft_els_id=S0378775310009985&rfr_iscdi=true |