Study of parameterizations for the rigid body transformations of the scan registration problem

The iterative closest point (ICP) algorithm is the de facto standard for geometric alignment of three-dimensional models when an initial relative pose estimate is available. The basis of the algorithm is the minimization of an error function that takes point correspondences into account. Four closed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding 2010-08, Vol.114 (8), p.963-980
Hauptverfasser: Nüchter, Andreas, Elseberg, Jan, Schneider, Peter, Paulus, Dietrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 980
container_issue 8
container_start_page 963
container_title Computer vision and image understanding
container_volume 114
creator Nüchter, Andreas
Elseberg, Jan
Schneider, Peter
Paulus, Dietrich
description The iterative closest point (ICP) algorithm is the de facto standard for geometric alignment of three-dimensional models when an initial relative pose estimate is available. The basis of the algorithm is the minimization of an error function that takes point correspondences into account. Four closed-form solution methods are known for minimizing this function. This paper presents novel linear solutions to the scan registration problem, i.e., to the problem of putting and aligning 3D scans in a common coordinate system. We extend the methods for registering n-scans in a global and simultaneous fashion, such that the registration of the nth scan influences all previous registrations in one step.
doi_str_mv 10.1016/j.cviu.2010.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753684565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S107731421000072X</els_id><sourcerecordid>753684565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-3b51ef92acc58c7a53817febb4948c7f9f28bd0ffaebc66d71674c1828dfaca73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-5iKfWfLRNC15k8QsWPKjgyZCmkzVL26xJu7D-elN28egpyeR5Z5gHoUtKUkpocbNO9daOKSOxQHhKiDhCM0oqkjCefxxPdyESTjN2is5CWBNCaVbRGfp8HcZmh53BG-VVBwN4-6MG6_qAjfN4-ALs7co2uHaRG7zqQ6x3ByTmJiJo1WMPKxsiMP3gjXd1C905OjGqDXBxOOfo_eH-bfGULF8enxd3y0Tzgg0Jr3MKpmJK67zUQuW8pMJAXWdVFt-mMqysG2KMgloXRSNoITJNS1Y2Rmkl-Bxd7_vGud8jhEF2NmhoW9WDG4MUOS_KLC_ySLI9qb0LwYORG2875XeSEjm5lGs5uZSTS0m4jC5j6OrQXsVVWxMtaBv-koxTXpKyiNztnoO469aCl0Fb6DU01oMeZOPsf2N-AQqVjTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753684565</pqid></control><display><type>article</type><title>Study of parameterizations for the rigid body transformations of the scan registration problem</title><source>Elsevier ScienceDirect Journals</source><creator>Nüchter, Andreas ; Elseberg, Jan ; Schneider, Peter ; Paulus, Dietrich</creator><creatorcontrib>Nüchter, Andreas ; Elseberg, Jan ; Schneider, Peter ; Paulus, Dietrich</creatorcontrib><description>The iterative closest point (ICP) algorithm is the de facto standard for geometric alignment of three-dimensional models when an initial relative pose estimate is available. The basis of the algorithm is the minimization of an error function that takes point correspondences into account. Four closed-form solution methods are known for minimizing this function. This paper presents novel linear solutions to the scan registration problem, i.e., to the problem of putting and aligning 3D scans in a common coordinate system. We extend the methods for registering n-scans in a global and simultaneous fashion, such that the registration of the nth scan influences all previous registrations in one step.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2010.03.007</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>3D point cloud registration ; 3D scan matching ; Algorithms ; Alignment ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; ICP algorithm ; Mathematical analysis ; Mathematical models ; Parametrization ; Pattern recognition. Digital image processing. Computational geometry ; Rigid-body dynamics ; Three dimensional</subject><ispartof>Computer vision and image understanding, 2010-08, Vol.114 (8), p.963-980</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-3b51ef92acc58c7a53817febb4948c7f9f28bd0ffaebc66d71674c1828dfaca73</citedby><cites>FETCH-LOGICAL-c362t-3b51ef92acc58c7a53817febb4948c7f9f28bd0ffaebc66d71674c1828dfaca73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S107731421000072X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23138086$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nüchter, Andreas</creatorcontrib><creatorcontrib>Elseberg, Jan</creatorcontrib><creatorcontrib>Schneider, Peter</creatorcontrib><creatorcontrib>Paulus, Dietrich</creatorcontrib><title>Study of parameterizations for the rigid body transformations of the scan registration problem</title><title>Computer vision and image understanding</title><description>The iterative closest point (ICP) algorithm is the de facto standard for geometric alignment of three-dimensional models when an initial relative pose estimate is available. The basis of the algorithm is the minimization of an error function that takes point correspondences into account. Four closed-form solution methods are known for minimizing this function. This paper presents novel linear solutions to the scan registration problem, i.e., to the problem of putting and aligning 3D scans in a common coordinate system. We extend the methods for registering n-scans in a global and simultaneous fashion, such that the registration of the nth scan influences all previous registrations in one step.</description><subject>3D point cloud registration</subject><subject>3D scan matching</subject><subject>Algorithms</subject><subject>Alignment</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>ICP algorithm</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Parametrization</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Rigid-body dynamics</subject><subject>Three dimensional</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-5iKfWfLRNC15k8QsWPKjgyZCmkzVL26xJu7D-elN28egpyeR5Z5gHoUtKUkpocbNO9daOKSOxQHhKiDhCM0oqkjCefxxPdyESTjN2is5CWBNCaVbRGfp8HcZmh53BG-VVBwN4-6MG6_qAjfN4-ALs7co2uHaRG7zqQ6x3ByTmJiJo1WMPKxsiMP3gjXd1C905OjGqDXBxOOfo_eH-bfGULF8enxd3y0Tzgg0Jr3MKpmJK67zUQuW8pMJAXWdVFt-mMqysG2KMgloXRSNoITJNS1Y2Rmkl-Bxd7_vGud8jhEF2NmhoW9WDG4MUOS_KLC_ySLI9qb0LwYORG2875XeSEjm5lGs5uZSTS0m4jC5j6OrQXsVVWxMtaBv-koxTXpKyiNztnoO469aCl0Fb6DU01oMeZOPsf2N-AQqVjTk</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Nüchter, Andreas</creator><creator>Elseberg, Jan</creator><creator>Schneider, Peter</creator><creator>Paulus, Dietrich</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100801</creationdate><title>Study of parameterizations for the rigid body transformations of the scan registration problem</title><author>Nüchter, Andreas ; Elseberg, Jan ; Schneider, Peter ; Paulus, Dietrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-3b51ef92acc58c7a53817febb4948c7f9f28bd0ffaebc66d71674c1828dfaca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D point cloud registration</topic><topic>3D scan matching</topic><topic>Algorithms</topic><topic>Alignment</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>ICP algorithm</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Parametrization</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Rigid-body dynamics</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nüchter, Andreas</creatorcontrib><creatorcontrib>Elseberg, Jan</creatorcontrib><creatorcontrib>Schneider, Peter</creatorcontrib><creatorcontrib>Paulus, Dietrich</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nüchter, Andreas</au><au>Elseberg, Jan</au><au>Schneider, Peter</au><au>Paulus, Dietrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of parameterizations for the rigid body transformations of the scan registration problem</atitle><jtitle>Computer vision and image understanding</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>114</volume><issue>8</issue><spage>963</spage><epage>980</epage><pages>963-980</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>The iterative closest point (ICP) algorithm is the de facto standard for geometric alignment of three-dimensional models when an initial relative pose estimate is available. The basis of the algorithm is the minimization of an error function that takes point correspondences into account. Four closed-form solution methods are known for minimizing this function. This paper presents novel linear solutions to the scan registration problem, i.e., to the problem of putting and aligning 3D scans in a common coordinate system. We extend the methods for registering n-scans in a global and simultaneous fashion, such that the registration of the nth scan influences all previous registrations in one step.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2010.03.007</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2010-08, Vol.114 (8), p.963-980
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_753684565
source Elsevier ScienceDirect Journals
subjects 3D point cloud registration
3D scan matching
Algorithms
Alignment
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
ICP algorithm
Mathematical analysis
Mathematical models
Parametrization
Pattern recognition. Digital image processing. Computational geometry
Rigid-body dynamics
Three dimensional
title Study of parameterizations for the rigid body transformations of the scan registration problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20parameterizations%20for%20the%20rigid%20body%20transformations%20of%20the%20scan%20registration%20problem&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=N%C3%BCchter,%20Andreas&rft.date=2010-08-01&rft.volume=114&rft.issue=8&rft.spage=963&rft.epage=980&rft.pages=963-980&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1016/j.cviu.2010.03.007&rft_dat=%3Cproquest_cross%3E753684565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753684565&rft_id=info:pmid/&rft_els_id=S107731421000072X&rfr_iscdi=true