Robust deconvolution for ARMAX models with Gaussian uncertainties

In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the a posteriori probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input–output ARMAX models, where the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2010-12, Vol.90 (12), p.3110-3121
Hauptverfasser: Milocco, R.H., De Doná, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3121
container_issue 12
container_start_page 3110
container_title Signal processing
container_volume 90
creator Milocco, R.H.
De Doná, J.A.
description In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the a posteriori probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input–output ARMAX models, where the uncertainty is modelled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the a posteriori probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.
doi_str_mv 10.1016/j.sigpro.2010.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753684270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168410002161</els_id><sourcerecordid>753684270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-304cc16421ea6dc218812e022137aea5003bf727151f4873c928291177e2178a3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gYdexFPXmaRt6kVYRFdBEUTBW8imU83SbTTTKr69WVY8ehoYvn9-5hPiGGGGgNXZasb-9T2GmYS0gnIGWOyICdZa5ros9a6YJKzMsaqLfXHAvAIAVBVMxPwxLEcesoZc6D9DNw4-9FkbYjZ_vJ-_ZOvQUMfZlx_esoUdmb3ts7F3FAfr-8ETH4q91nZMR79zKp6vr54ub_K7h8Xt5fwud6qqh1xB4RxWhUSyVeMk1jVKAilRaUu2BFDLVkuNJbZFrZU7l7U8R9SaJOraqqk43d5Nj36MxINZe3bUdbanMLLRZeoppIZEFlvSxcAcqTXv0a9t_DYIZiPMrMxWmNkIM1CaJCzFTn4LLDvbtdH2zvNfVirQUukNd7Hlkhj69BQNO09JSeMjucE0wf9f9ANcS4Fe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753684270</pqid></control><display><type>article</type><title>Robust deconvolution for ARMAX models with Gaussian uncertainties</title><source>Elsevier ScienceDirect Journals</source><creator>Milocco, R.H. ; De Doná, J.A.</creator><creatorcontrib>Milocco, R.H. ; De Doná, J.A.</creatorcontrib><description>In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the a posteriori probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input–output ARMAX models, where the uncertainty is modelled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the a posteriori probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2010.05.014</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Deconvolution ; Design engineering ; Exact sciences and technology ; Gaussian ; Horizon ; Information, signal and communications theory ; Linear systems ; Miscellaneous ; Quadratic programme ; Robust deconvolution ; Robust filtering ; Signal processing ; Standard deviation ; Statistics ; Stochastic uncertainties ; Telecommunications and information theory ; Truncated Gaussian distribution ; Uncertainty</subject><ispartof>Signal processing, 2010-12, Vol.90 (12), p.3110-3121</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-304cc16421ea6dc218812e022137aea5003bf727151f4873c928291177e2178a3</citedby><cites>FETCH-LOGICAL-c368t-304cc16421ea6dc218812e022137aea5003bf727151f4873c928291177e2178a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sigpro.2010.05.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23072374$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Milocco, R.H.</creatorcontrib><creatorcontrib>De Doná, J.A.</creatorcontrib><title>Robust deconvolution for ARMAX models with Gaussian uncertainties</title><title>Signal processing</title><description>In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the a posteriori probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input–output ARMAX models, where the uncertainty is modelled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the a posteriori probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.</description><subject>Applied sciences</subject><subject>Deconvolution</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Gaussian</subject><subject>Horizon</subject><subject>Information, signal and communications theory</subject><subject>Linear systems</subject><subject>Miscellaneous</subject><subject>Quadratic programme</subject><subject>Robust deconvolution</subject><subject>Robust filtering</subject><subject>Signal processing</subject><subject>Standard deviation</subject><subject>Statistics</subject><subject>Stochastic uncertainties</subject><subject>Telecommunications and information theory</subject><subject>Truncated Gaussian distribution</subject><subject>Uncertainty</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gYdexFPXmaRt6kVYRFdBEUTBW8imU83SbTTTKr69WVY8ehoYvn9-5hPiGGGGgNXZasb-9T2GmYS0gnIGWOyICdZa5ros9a6YJKzMsaqLfXHAvAIAVBVMxPwxLEcesoZc6D9DNw4-9FkbYjZ_vJ-_ZOvQUMfZlx_esoUdmb3ts7F3FAfr-8ETH4q91nZMR79zKp6vr54ub_K7h8Xt5fwud6qqh1xB4RxWhUSyVeMk1jVKAilRaUu2BFDLVkuNJbZFrZU7l7U8R9SaJOraqqk43d5Nj36MxINZe3bUdbanMLLRZeoppIZEFlvSxcAcqTXv0a9t_DYIZiPMrMxWmNkIM1CaJCzFTn4LLDvbtdH2zvNfVirQUukNd7Hlkhj69BQNO09JSeMjucE0wf9f9ANcS4Fe</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Milocco, R.H.</creator><creator>De Doná, J.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101201</creationdate><title>Robust deconvolution for ARMAX models with Gaussian uncertainties</title><author>Milocco, R.H. ; De Doná, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-304cc16421ea6dc218812e022137aea5003bf727151f4873c928291177e2178a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Deconvolution</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Gaussian</topic><topic>Horizon</topic><topic>Information, signal and communications theory</topic><topic>Linear systems</topic><topic>Miscellaneous</topic><topic>Quadratic programme</topic><topic>Robust deconvolution</topic><topic>Robust filtering</topic><topic>Signal processing</topic><topic>Standard deviation</topic><topic>Statistics</topic><topic>Stochastic uncertainties</topic><topic>Telecommunications and information theory</topic><topic>Truncated Gaussian distribution</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milocco, R.H.</creatorcontrib><creatorcontrib>De Doná, J.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milocco, R.H.</au><au>De Doná, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust deconvolution for ARMAX models with Gaussian uncertainties</atitle><jtitle>Signal processing</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>90</volume><issue>12</issue><spage>3110</spage><epage>3121</epage><pages>3110-3121</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the a posteriori probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input–output ARMAX models, where the uncertainty is modelled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the a posteriori probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2010.05.014</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2010-12, Vol.90 (12), p.3110-3121
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_753684270
source Elsevier ScienceDirect Journals
subjects Applied sciences
Deconvolution
Design engineering
Exact sciences and technology
Gaussian
Horizon
Information, signal and communications theory
Linear systems
Miscellaneous
Quadratic programme
Robust deconvolution
Robust filtering
Signal processing
Standard deviation
Statistics
Stochastic uncertainties
Telecommunications and information theory
Truncated Gaussian distribution
Uncertainty
title Robust deconvolution for ARMAX models with Gaussian uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20deconvolution%20for%20ARMAX%20models%20with%20Gaussian%20uncertainties&rft.jtitle=Signal%20processing&rft.au=Milocco,%20R.H.&rft.date=2010-12-01&rft.volume=90&rft.issue=12&rft.spage=3110&rft.epage=3121&rft.pages=3110-3121&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2010.05.014&rft_dat=%3Cproquest_cross%3E753684270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753684270&rft_id=info:pmid/&rft_els_id=S0165168410002161&rfr_iscdi=true