Robust deconvolution for ARMAX models with Gaussian uncertainties
In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the a posteriori probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input–output ARMAX models, where the...
Gespeichert in:
Veröffentlicht in: | Signal processing 2010-12, Vol.90 (12), p.3110-3121 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3121 |
---|---|
container_issue | 12 |
container_start_page | 3110 |
container_title | Signal processing |
container_volume | 90 |
creator | Milocco, R.H. De Doná, J.A. |
description | In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the
a posteriori probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input–output ARMAX models, where the uncertainty is modelled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the
a posteriori probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design. |
doi_str_mv | 10.1016/j.sigpro.2010.05.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753684270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168410002161</els_id><sourcerecordid>753684270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-304cc16421ea6dc218812e022137aea5003bf727151f4873c928291177e2178a3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gYdexFPXmaRt6kVYRFdBEUTBW8imU83SbTTTKr69WVY8ehoYvn9-5hPiGGGGgNXZasb-9T2GmYS0gnIGWOyICdZa5ros9a6YJKzMsaqLfXHAvAIAVBVMxPwxLEcesoZc6D9DNw4-9FkbYjZ_vJ-_ZOvQUMfZlx_esoUdmb3ts7F3FAfr-8ETH4q91nZMR79zKp6vr54ub_K7h8Xt5fwud6qqh1xB4RxWhUSyVeMk1jVKAilRaUu2BFDLVkuNJbZFrZU7l7U8R9SaJOraqqk43d5Nj36MxINZe3bUdbanMLLRZeoppIZEFlvSxcAcqTXv0a9t_DYIZiPMrMxWmNkIM1CaJCzFTn4LLDvbtdH2zvNfVirQUukNd7Hlkhj69BQNO09JSeMjucE0wf9f9ANcS4Fe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753684270</pqid></control><display><type>article</type><title>Robust deconvolution for ARMAX models with Gaussian uncertainties</title><source>Elsevier ScienceDirect Journals</source><creator>Milocco, R.H. ; De Doná, J.A.</creator><creatorcontrib>Milocco, R.H. ; De Doná, J.A.</creatorcontrib><description>In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the
a posteriori probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input–output ARMAX models, where the uncertainty is modelled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the
a posteriori probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2010.05.014</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Deconvolution ; Design engineering ; Exact sciences and technology ; Gaussian ; Horizon ; Information, signal and communications theory ; Linear systems ; Miscellaneous ; Quadratic programme ; Robust deconvolution ; Robust filtering ; Signal processing ; Standard deviation ; Statistics ; Stochastic uncertainties ; Telecommunications and information theory ; Truncated Gaussian distribution ; Uncertainty</subject><ispartof>Signal processing, 2010-12, Vol.90 (12), p.3110-3121</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-304cc16421ea6dc218812e022137aea5003bf727151f4873c928291177e2178a3</citedby><cites>FETCH-LOGICAL-c368t-304cc16421ea6dc218812e022137aea5003bf727151f4873c928291177e2178a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sigpro.2010.05.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23072374$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Milocco, R.H.</creatorcontrib><creatorcontrib>De Doná, J.A.</creatorcontrib><title>Robust deconvolution for ARMAX models with Gaussian uncertainties</title><title>Signal processing</title><description>In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the
a posteriori probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input–output ARMAX models, where the uncertainty is modelled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the
a posteriori probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.</description><subject>Applied sciences</subject><subject>Deconvolution</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Gaussian</subject><subject>Horizon</subject><subject>Information, signal and communications theory</subject><subject>Linear systems</subject><subject>Miscellaneous</subject><subject>Quadratic programme</subject><subject>Robust deconvolution</subject><subject>Robust filtering</subject><subject>Signal processing</subject><subject>Standard deviation</subject><subject>Statistics</subject><subject>Stochastic uncertainties</subject><subject>Telecommunications and information theory</subject><subject>Truncated Gaussian distribution</subject><subject>Uncertainty</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gYdexFPXmaRt6kVYRFdBEUTBW8imU83SbTTTKr69WVY8ehoYvn9-5hPiGGGGgNXZasb-9T2GmYS0gnIGWOyICdZa5ros9a6YJKzMsaqLfXHAvAIAVBVMxPwxLEcesoZc6D9DNw4-9FkbYjZ_vJ-_ZOvQUMfZlx_esoUdmb3ts7F3FAfr-8ETH4q91nZMR79zKp6vr54ub_K7h8Xt5fwud6qqh1xB4RxWhUSyVeMk1jVKAilRaUu2BFDLVkuNJbZFrZU7l7U8R9SaJOraqqk43d5Nj36MxINZe3bUdbanMLLRZeoppIZEFlvSxcAcqTXv0a9t_DYIZiPMrMxWmNkIM1CaJCzFTn4LLDvbtdH2zvNfVirQUukNd7Hlkhj69BQNO09JSeMjucE0wf9f9ANcS4Fe</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Milocco, R.H.</creator><creator>De Doná, J.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101201</creationdate><title>Robust deconvolution for ARMAX models with Gaussian uncertainties</title><author>Milocco, R.H. ; De Doná, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-304cc16421ea6dc218812e022137aea5003bf727151f4873c928291177e2178a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Deconvolution</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Gaussian</topic><topic>Horizon</topic><topic>Information, signal and communications theory</topic><topic>Linear systems</topic><topic>Miscellaneous</topic><topic>Quadratic programme</topic><topic>Robust deconvolution</topic><topic>Robust filtering</topic><topic>Signal processing</topic><topic>Standard deviation</topic><topic>Statistics</topic><topic>Stochastic uncertainties</topic><topic>Telecommunications and information theory</topic><topic>Truncated Gaussian distribution</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milocco, R.H.</creatorcontrib><creatorcontrib>De Doná, J.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milocco, R.H.</au><au>De Doná, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust deconvolution for ARMAX models with Gaussian uncertainties</atitle><jtitle>Signal processing</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>90</volume><issue>12</issue><spage>3110</spage><epage>3121</epage><pages>3110-3121</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the
a posteriori probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input–output ARMAX models, where the uncertainty is modelled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the
a posteriori probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2010.05.014</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2010-12, Vol.90 (12), p.3110-3121 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_proquest_miscellaneous_753684270 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Deconvolution Design engineering Exact sciences and technology Gaussian Horizon Information, signal and communications theory Linear systems Miscellaneous Quadratic programme Robust deconvolution Robust filtering Signal processing Standard deviation Statistics Stochastic uncertainties Telecommunications and information theory Truncated Gaussian distribution Uncertainty |
title | Robust deconvolution for ARMAX models with Gaussian uncertainties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20deconvolution%20for%20ARMAX%20models%20with%20Gaussian%20uncertainties&rft.jtitle=Signal%20processing&rft.au=Milocco,%20R.H.&rft.date=2010-12-01&rft.volume=90&rft.issue=12&rft.spage=3110&rft.epage=3121&rft.pages=3110-3121&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2010.05.014&rft_dat=%3Cproquest_cross%3E753684270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753684270&rft_id=info:pmid/&rft_els_id=S0165168410002161&rfr_iscdi=true |