Efficient indexing algorithms for one-dimensional discretely-scaled strings
The discretely-scaled string indexing problem asks one to preprocess a given text string T, so that for a queried pattern P, the matched positions in T that P appears with some discrete scale can be reported efficiently. For solving this problem, Wang et al. first show that with an O ( | T | log | T...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2010-07, Vol.110 (16), p.730-734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 734 |
---|---|
container_issue | 16 |
container_start_page | 730 |
container_title | Information processing letters |
container_volume | 110 |
creator | Peng, Yung-Hsing Yang, Chang-Biau Huang, Kuo-Si Ann, Hsing-Yen |
description | The discretely-scaled string indexing problem asks one to preprocess a given text string
T, so that for a queried pattern
P, the matched positions in
T that
P appears with some discrete scale can be reported efficiently. For solving this problem, Wang et al. first show that with an
O
(
|
T
|
log
|
T
|
)
-time preprocessing on
T, all matched positions can be reported in
O
(
|
P
|
+
U
d
)
time, where
|
T
|
,
|
P
|
, and
U
d
denote the length of
T, the length of
P, and the number of matched positions for discretely-scaled
P in
T, respectively. In this paper, for fixed alphabets we propose the first-known optimal indexing algorithm that takes
O
(
|
T
|
)
and
O
(
|
P
|
+
U
d
)
time in its preprocessing and query phases, respectively. For integer and unbounded alphabets, our new algorithm can also be extended to obtain the best-known results. |
doi_str_mv | 10.1016/j.ipl.2010.05.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753683842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019010001353</els_id><sourcerecordid>2067087261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-5d0f735478f499f53c9a939f0c45880e03b25c236acf2ed7c38aa324fac730ac3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNsiiKetk2SzyeJJpH5gwYueQ8xOasp2U5Ot2H9vSosHD56Ggeedj4eQcwoTCrS-Xkz8qpswyD2ICVB2QEZUSVbWlDaHZATAoATawDE5SWkBAHXF5Yg8T53z1mM_FL5v8dv388J08xD98LFMhQuxCD2WrV9in3zoTVe0PtmIA3abMlnTYVukIeZcOiVHznQJz_Z1TN7up693j-Xs5eHp7nZWWq7qoRQtOMlFJZWrmsYJbhvT8MaBrYRSgMDfmbCM18Y6hq3MKWM4q5yxkoOxfEyudnNXMXyuMQ16mU_CrjM9hnXSUvBacVWxTF78IRdhHfMTSQtGqVSMywzRHWRjSCmi06volyZuNAW9lasXOsvVW7kahM5yc-ZyP9hsHbhoeuvTb5DxLBgUz9zNjsPs48tj1Gkr22LrI9pBt8H_s-UHsi2Ozg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>521178237</pqid></control><display><type>article</type><title>Efficient indexing algorithms for one-dimensional discretely-scaled strings</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Peng, Yung-Hsing ; Yang, Chang-Biau ; Huang, Kuo-Si ; Ann, Hsing-Yen</creator><creatorcontrib>Peng, Yung-Hsing ; Yang, Chang-Biau ; Huang, Kuo-Si ; Ann, Hsing-Yen</creatorcontrib><description>The discretely-scaled string indexing problem asks one to preprocess a given text string
T, so that for a queried pattern
P, the matched positions in
T that
P appears with some discrete scale can be reported efficiently. For solving this problem, Wang et al. first show that with an
O
(
|
T
|
log
|
T
|
)
-time preprocessing on
T, all matched positions can be reported in
O
(
|
P
|
+
U
d
)
time, where
|
T
|
,
|
P
|
, and
U
d
denote the length of
T, the length of
P, and the number of matched positions for discretely-scaled
P in
T, respectively. In this paper, for fixed alphabets we propose the first-known optimal indexing algorithm that takes
O
(
|
T
|
)
and
O
(
|
P
|
+
U
d
)
time in its preprocessing and query phases, respectively. For integer and unbounded alphabets, our new algorithm can also be extended to obtain the best-known results.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2010.05.012</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithm ; Algorithmics. Computability. Computer arithmetics ; Algorithms ; Alphabets ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Discrete scale ; Exact sciences and technology ; Indexing ; Miscellaneous ; Optimization ; Phases ; Preprocessing ; Problem solving ; Problem solving, game playing ; String matching ; Strings ; Studies ; Texts ; Theoretical computing</subject><ispartof>Information processing letters, 2010-07, Vol.110 (16), p.730-734</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 31, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-5d0f735478f499f53c9a939f0c45880e03b25c236acf2ed7c38aa324fac730ac3</citedby><cites>FETCH-LOGICAL-c386t-5d0f735478f499f53c9a939f0c45880e03b25c236acf2ed7c38aa324fac730ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2010.05.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23000083$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Yung-Hsing</creatorcontrib><creatorcontrib>Yang, Chang-Biau</creatorcontrib><creatorcontrib>Huang, Kuo-Si</creatorcontrib><creatorcontrib>Ann, Hsing-Yen</creatorcontrib><title>Efficient indexing algorithms for one-dimensional discretely-scaled strings</title><title>Information processing letters</title><description>The discretely-scaled string indexing problem asks one to preprocess a given text string
T, so that for a queried pattern
P, the matched positions in
T that
P appears with some discrete scale can be reported efficiently. For solving this problem, Wang et al. first show that with an
O
(
|
T
|
log
|
T
|
)
-time preprocessing on
T, all matched positions can be reported in
O
(
|
P
|
+
U
d
)
time, where
|
T
|
,
|
P
|
, and
U
d
denote the length of
T, the length of
P, and the number of matched positions for discretely-scaled
P in
T, respectively. In this paper, for fixed alphabets we propose the first-known optimal indexing algorithm that takes
O
(
|
T
|
)
and
O
(
|
P
|
+
U
d
)
time in its preprocessing and query phases, respectively. For integer and unbounded alphabets, our new algorithm can also be extended to obtain the best-known results.</description><subject>Algorithm</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Alphabets</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Discrete scale</subject><subject>Exact sciences and technology</subject><subject>Indexing</subject><subject>Miscellaneous</subject><subject>Optimization</subject><subject>Phases</subject><subject>Preprocessing</subject><subject>Problem solving</subject><subject>Problem solving, game playing</subject><subject>String matching</subject><subject>Strings</subject><subject>Studies</subject><subject>Texts</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNsiiKetk2SzyeJJpH5gwYueQ8xOasp2U5Ot2H9vSosHD56Ggeedj4eQcwoTCrS-Xkz8qpswyD2ICVB2QEZUSVbWlDaHZATAoATawDE5SWkBAHXF5Yg8T53z1mM_FL5v8dv388J08xD98LFMhQuxCD2WrV9in3zoTVe0PtmIA3abMlnTYVukIeZcOiVHznQJz_Z1TN7up693j-Xs5eHp7nZWWq7qoRQtOMlFJZWrmsYJbhvT8MaBrYRSgMDfmbCM18Y6hq3MKWM4q5yxkoOxfEyudnNXMXyuMQ16mU_CrjM9hnXSUvBacVWxTF78IRdhHfMTSQtGqVSMywzRHWRjSCmi06volyZuNAW9lasXOsvVW7kahM5yc-ZyP9hsHbhoeuvTb5DxLBgUz9zNjsPs48tj1Gkr22LrI9pBt8H_s-UHsi2Ozg</recordid><startdate>20100731</startdate><enddate>20100731</enddate><creator>Peng, Yung-Hsing</creator><creator>Yang, Chang-Biau</creator><creator>Huang, Kuo-Si</creator><creator>Ann, Hsing-Yen</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100731</creationdate><title>Efficient indexing algorithms for one-dimensional discretely-scaled strings</title><author>Peng, Yung-Hsing ; Yang, Chang-Biau ; Huang, Kuo-Si ; Ann, Hsing-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-5d0f735478f499f53c9a939f0c45880e03b25c236acf2ed7c38aa324fac730ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Alphabets</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Discrete scale</topic><topic>Exact sciences and technology</topic><topic>Indexing</topic><topic>Miscellaneous</topic><topic>Optimization</topic><topic>Phases</topic><topic>Preprocessing</topic><topic>Problem solving</topic><topic>Problem solving, game playing</topic><topic>String matching</topic><topic>Strings</topic><topic>Studies</topic><topic>Texts</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yung-Hsing</creatorcontrib><creatorcontrib>Yang, Chang-Biau</creatorcontrib><creatorcontrib>Huang, Kuo-Si</creatorcontrib><creatorcontrib>Ann, Hsing-Yen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yung-Hsing</au><au>Yang, Chang-Biau</au><au>Huang, Kuo-Si</au><au>Ann, Hsing-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient indexing algorithms for one-dimensional discretely-scaled strings</atitle><jtitle>Information processing letters</jtitle><date>2010-07-31</date><risdate>2010</risdate><volume>110</volume><issue>16</issue><spage>730</spage><epage>734</epage><pages>730-734</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>The discretely-scaled string indexing problem asks one to preprocess a given text string
T, so that for a queried pattern
P, the matched positions in
T that
P appears with some discrete scale can be reported efficiently. For solving this problem, Wang et al. first show that with an
O
(
|
T
|
log
|
T
|
)
-time preprocessing on
T, all matched positions can be reported in
O
(
|
P
|
+
U
d
)
time, where
|
T
|
,
|
P
|
, and
U
d
denote the length of
T, the length of
P, and the number of matched positions for discretely-scaled
P in
T, respectively. In this paper, for fixed alphabets we propose the first-known optimal indexing algorithm that takes
O
(
|
T
|
)
and
O
(
|
P
|
+
U
d
)
time in its preprocessing and query phases, respectively. For integer and unbounded alphabets, our new algorithm can also be extended to obtain the best-known results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2010.05.012</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0190 |
ispartof | Information processing letters, 2010-07, Vol.110 (16), p.730-734 |
issn | 0020-0190 1872-6119 |
language | eng |
recordid | cdi_proquest_miscellaneous_753683842 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithm Algorithmics. Computability. Computer arithmetics Algorithms Alphabets Applied sciences Artificial intelligence Computer science control theory systems Discrete scale Exact sciences and technology Indexing Miscellaneous Optimization Phases Preprocessing Problem solving Problem solving, game playing String matching Strings Studies Texts Theoretical computing |
title | Efficient indexing algorithms for one-dimensional discretely-scaled strings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20indexing%20algorithms%20for%20one-dimensional%20discretely-scaled%20strings&rft.jtitle=Information%20processing%20letters&rft.au=Peng,%20Yung-Hsing&rft.date=2010-07-31&rft.volume=110&rft.issue=16&rft.spage=730&rft.epage=734&rft.pages=730-734&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2010.05.012&rft_dat=%3Cproquest_cross%3E2067087261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=521178237&rft_id=info:pmid/&rft_els_id=S0020019010001353&rfr_iscdi=true |