Efficient indexing algorithms for one-dimensional discretely-scaled strings

The discretely-scaled string indexing problem asks one to preprocess a given text string T, so that for a queried pattern P, the matched positions in T that P appears with some discrete scale can be reported efficiently. For solving this problem, Wang et al. first show that with an O ( | T | log | T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2010-07, Vol.110 (16), p.730-734
Hauptverfasser: Peng, Yung-Hsing, Yang, Chang-Biau, Huang, Kuo-Si, Ann, Hsing-Yen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 734
container_issue 16
container_start_page 730
container_title Information processing letters
container_volume 110
creator Peng, Yung-Hsing
Yang, Chang-Biau
Huang, Kuo-Si
Ann, Hsing-Yen
description The discretely-scaled string indexing problem asks one to preprocess a given text string T, so that for a queried pattern P, the matched positions in T that P appears with some discrete scale can be reported efficiently. For solving this problem, Wang et al. first show that with an O ( | T | log | T | ) -time preprocessing on T, all matched positions can be reported in O ( | P | + U d ) time, where | T | , | P | , and U d denote the length of T, the length of P, and the number of matched positions for discretely-scaled P in T, respectively. In this paper, for fixed alphabets we propose the first-known optimal indexing algorithm that takes O ( | T | ) and O ( | P | + U d ) time in its preprocessing and query phases, respectively. For integer and unbounded alphabets, our new algorithm can also be extended to obtain the best-known results.
doi_str_mv 10.1016/j.ipl.2010.05.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753683842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019010001353</els_id><sourcerecordid>2067087261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-5d0f735478f499f53c9a939f0c45880e03b25c236acf2ed7c38aa324fac730ac3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNsiiKetk2SzyeJJpH5gwYueQ8xOasp2U5Ot2H9vSosHD56Ggeedj4eQcwoTCrS-Xkz8qpswyD2ICVB2QEZUSVbWlDaHZATAoATawDE5SWkBAHXF5Yg8T53z1mM_FL5v8dv388J08xD98LFMhQuxCD2WrV9in3zoTVe0PtmIA3abMlnTYVukIeZcOiVHznQJz_Z1TN7up693j-Xs5eHp7nZWWq7qoRQtOMlFJZWrmsYJbhvT8MaBrYRSgMDfmbCM18Y6hq3MKWM4q5yxkoOxfEyudnNXMXyuMQ16mU_CrjM9hnXSUvBacVWxTF78IRdhHfMTSQtGqVSMywzRHWRjSCmi06volyZuNAW9lasXOsvVW7kahM5yc-ZyP9hsHbhoeuvTb5DxLBgUz9zNjsPs48tj1Gkr22LrI9pBt8H_s-UHsi2Ozg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>521178237</pqid></control><display><type>article</type><title>Efficient indexing algorithms for one-dimensional discretely-scaled strings</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Peng, Yung-Hsing ; Yang, Chang-Biau ; Huang, Kuo-Si ; Ann, Hsing-Yen</creator><creatorcontrib>Peng, Yung-Hsing ; Yang, Chang-Biau ; Huang, Kuo-Si ; Ann, Hsing-Yen</creatorcontrib><description>The discretely-scaled string indexing problem asks one to preprocess a given text string T, so that for a queried pattern P, the matched positions in T that P appears with some discrete scale can be reported efficiently. For solving this problem, Wang et al. first show that with an O ( | T | log | T | ) -time preprocessing on T, all matched positions can be reported in O ( | P | + U d ) time, where | T | , | P | , and U d denote the length of T, the length of P, and the number of matched positions for discretely-scaled P in T, respectively. In this paper, for fixed alphabets we propose the first-known optimal indexing algorithm that takes O ( | T | ) and O ( | P | + U d ) time in its preprocessing and query phases, respectively. For integer and unbounded alphabets, our new algorithm can also be extended to obtain the best-known results.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2010.05.012</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithm ; Algorithmics. Computability. Computer arithmetics ; Algorithms ; Alphabets ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Discrete scale ; Exact sciences and technology ; Indexing ; Miscellaneous ; Optimization ; Phases ; Preprocessing ; Problem solving ; Problem solving, game playing ; String matching ; Strings ; Studies ; Texts ; Theoretical computing</subject><ispartof>Information processing letters, 2010-07, Vol.110 (16), p.730-734</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 31, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-5d0f735478f499f53c9a939f0c45880e03b25c236acf2ed7c38aa324fac730ac3</citedby><cites>FETCH-LOGICAL-c386t-5d0f735478f499f53c9a939f0c45880e03b25c236acf2ed7c38aa324fac730ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2010.05.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23000083$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Yung-Hsing</creatorcontrib><creatorcontrib>Yang, Chang-Biau</creatorcontrib><creatorcontrib>Huang, Kuo-Si</creatorcontrib><creatorcontrib>Ann, Hsing-Yen</creatorcontrib><title>Efficient indexing algorithms for one-dimensional discretely-scaled strings</title><title>Information processing letters</title><description>The discretely-scaled string indexing problem asks one to preprocess a given text string T, so that for a queried pattern P, the matched positions in T that P appears with some discrete scale can be reported efficiently. For solving this problem, Wang et al. first show that with an O ( | T | log | T | ) -time preprocessing on T, all matched positions can be reported in O ( | P | + U d ) time, where | T | , | P | , and U d denote the length of T, the length of P, and the number of matched positions for discretely-scaled P in T, respectively. In this paper, for fixed alphabets we propose the first-known optimal indexing algorithm that takes O ( | T | ) and O ( | P | + U d ) time in its preprocessing and query phases, respectively. For integer and unbounded alphabets, our new algorithm can also be extended to obtain the best-known results.</description><subject>Algorithm</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Alphabets</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Discrete scale</subject><subject>Exact sciences and technology</subject><subject>Indexing</subject><subject>Miscellaneous</subject><subject>Optimization</subject><subject>Phases</subject><subject>Preprocessing</subject><subject>Problem solving</subject><subject>Problem solving, game playing</subject><subject>String matching</subject><subject>Strings</subject><subject>Studies</subject><subject>Texts</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNsiiKetk2SzyeJJpH5gwYueQ8xOasp2U5Ot2H9vSosHD56Ggeedj4eQcwoTCrS-Xkz8qpswyD2ICVB2QEZUSVbWlDaHZATAoATawDE5SWkBAHXF5Yg8T53z1mM_FL5v8dv388J08xD98LFMhQuxCD2WrV9in3zoTVe0PtmIA3abMlnTYVukIeZcOiVHznQJz_Z1TN7up693j-Xs5eHp7nZWWq7qoRQtOMlFJZWrmsYJbhvT8MaBrYRSgMDfmbCM18Y6hq3MKWM4q5yxkoOxfEyudnNXMXyuMQ16mU_CrjM9hnXSUvBacVWxTF78IRdhHfMTSQtGqVSMywzRHWRjSCmi06volyZuNAW9lasXOsvVW7kahM5yc-ZyP9hsHbhoeuvTb5DxLBgUz9zNjsPs48tj1Gkr22LrI9pBt8H_s-UHsi2Ozg</recordid><startdate>20100731</startdate><enddate>20100731</enddate><creator>Peng, Yung-Hsing</creator><creator>Yang, Chang-Biau</creator><creator>Huang, Kuo-Si</creator><creator>Ann, Hsing-Yen</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100731</creationdate><title>Efficient indexing algorithms for one-dimensional discretely-scaled strings</title><author>Peng, Yung-Hsing ; Yang, Chang-Biau ; Huang, Kuo-Si ; Ann, Hsing-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-5d0f735478f499f53c9a939f0c45880e03b25c236acf2ed7c38aa324fac730ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Alphabets</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Discrete scale</topic><topic>Exact sciences and technology</topic><topic>Indexing</topic><topic>Miscellaneous</topic><topic>Optimization</topic><topic>Phases</topic><topic>Preprocessing</topic><topic>Problem solving</topic><topic>Problem solving, game playing</topic><topic>String matching</topic><topic>Strings</topic><topic>Studies</topic><topic>Texts</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yung-Hsing</creatorcontrib><creatorcontrib>Yang, Chang-Biau</creatorcontrib><creatorcontrib>Huang, Kuo-Si</creatorcontrib><creatorcontrib>Ann, Hsing-Yen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yung-Hsing</au><au>Yang, Chang-Biau</au><au>Huang, Kuo-Si</au><au>Ann, Hsing-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient indexing algorithms for one-dimensional discretely-scaled strings</atitle><jtitle>Information processing letters</jtitle><date>2010-07-31</date><risdate>2010</risdate><volume>110</volume><issue>16</issue><spage>730</spage><epage>734</epage><pages>730-734</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>The discretely-scaled string indexing problem asks one to preprocess a given text string T, so that for a queried pattern P, the matched positions in T that P appears with some discrete scale can be reported efficiently. For solving this problem, Wang et al. first show that with an O ( | T | log | T | ) -time preprocessing on T, all matched positions can be reported in O ( | P | + U d ) time, where | T | , | P | , and U d denote the length of T, the length of P, and the number of matched positions for discretely-scaled P in T, respectively. In this paper, for fixed alphabets we propose the first-known optimal indexing algorithm that takes O ( | T | ) and O ( | P | + U d ) time in its preprocessing and query phases, respectively. For integer and unbounded alphabets, our new algorithm can also be extended to obtain the best-known results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2010.05.012</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2010-07, Vol.110 (16), p.730-734
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_miscellaneous_753683842
source Elsevier ScienceDirect Journals Complete
subjects Algorithm
Algorithmics. Computability. Computer arithmetics
Algorithms
Alphabets
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Discrete scale
Exact sciences and technology
Indexing
Miscellaneous
Optimization
Phases
Preprocessing
Problem solving
Problem solving, game playing
String matching
Strings
Studies
Texts
Theoretical computing
title Efficient indexing algorithms for one-dimensional discretely-scaled strings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20indexing%20algorithms%20for%20one-dimensional%20discretely-scaled%20strings&rft.jtitle=Information%20processing%20letters&rft.au=Peng,%20Yung-Hsing&rft.date=2010-07-31&rft.volume=110&rft.issue=16&rft.spage=730&rft.epage=734&rft.pages=730-734&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2010.05.012&rft_dat=%3Cproquest_cross%3E2067087261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=521178237&rft_id=info:pmid/&rft_els_id=S0020019010001353&rfr_iscdi=true