Binomial edge ideals and conditional independence statements

We introduce binomial edge ideals attached to a simple graph G and study their algebraic properties. We characterize those graphs for which the quadratic generators form a Gröbner basis in a lexicographic order induced by a vertex labeling. Such graphs are chordal and claw-free. We give a reduced sq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2010-09, Vol.45 (3), p.317-333
Hauptverfasser: Herzog, Jürgen, Hibi, Takayuki, Hreinsdóttir, Freyja, Kahle, Thomas, Rauh, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 3
container_start_page 317
container_title Advances in applied mathematics
container_volume 45
creator Herzog, Jürgen
Hibi, Takayuki
Hreinsdóttir, Freyja
Kahle, Thomas
Rauh, Johannes
description We introduce binomial edge ideals attached to a simple graph G and study their algebraic properties. We characterize those graphs for which the quadratic generators form a Gröbner basis in a lexicographic order induced by a vertex labeling. Such graphs are chordal and claw-free. We give a reduced squarefree Gröbner basis for general G. It follows that all binomial edge ideals are radical ideals. Their minimal primes can be characterized by particular subsets of the vertices of G. We provide sufficient conditions for Cohen–Macaulayness for closed and nonclosed graphs. Binomial edge ideals arise naturally in the study of conditional independence ideals. Our results apply for the class of conditional independence ideals where a fixed binary variable is independent of a collection of other variables, given the remaining ones. In this case the primary decomposition has a natural statistical interpretation.
doi_str_mv 10.1016/j.aam.2010.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753683714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S019688581000014X</els_id><sourcerecordid>753683714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-38ceaebebf358b9677ff57e2d98c9a41d66ffd0b5a5e114595ab6900258727943</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMouK7-AG-9iKfWSdu80IsuvmDBi55DmkwlS5uuTVfw35uyi0cvMwzzzQzzEXJJoaBA-c2mMKYvSkg10AKgOiILCgryEkR9TBZAFc-lZPKUnMW4AQBV8mpB7h58GHpvugzdJ2beoeliZoLL7BCcn_wQUs8Hh1tMIVjM4mQm7DFM8ZyctAnHi0Neko-nx_fVS75-e35d3a9zW3M55ZW0aLDBpq2YbBQXom2ZwNIpaZWpqeO8bR00zDCktGaKmYYrgJJJUQpVV0tyvd-7HYevHcZJ9z5a7DoTcNhFLVjFZSXoTNI9acchxhFbvR19b8YfTUHPovRGJ1F6FqWB6iQqzVwdtptoTdeOJlgf_wbLitacCkjc7Z7D9Oq3x1FH62cjzo9oJ-0G_8-VX5qpfRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753683714</pqid></control><display><type>article</type><title>Binomial edge ideals and conditional independence statements</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Herzog, Jürgen ; Hibi, Takayuki ; Hreinsdóttir, Freyja ; Kahle, Thomas ; Rauh, Johannes</creator><creatorcontrib>Herzog, Jürgen ; Hibi, Takayuki ; Hreinsdóttir, Freyja ; Kahle, Thomas ; Rauh, Johannes</creatorcontrib><description>We introduce binomial edge ideals attached to a simple graph G and study their algebraic properties. We characterize those graphs for which the quadratic generators form a Gröbner basis in a lexicographic order induced by a vertex labeling. Such graphs are chordal and claw-free. We give a reduced squarefree Gröbner basis for general G. It follows that all binomial edge ideals are radical ideals. Their minimal primes can be characterized by particular subsets of the vertices of G. We provide sufficient conditions for Cohen–Macaulayness for closed and nonclosed graphs. Binomial edge ideals arise naturally in the study of conditional independence ideals. Our results apply for the class of conditional independence ideals where a fixed binary variable is independent of a collection of other variables, given the remaining ones. In this case the primary decomposition has a natural statistical interpretation.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1016/j.aam.2010.01.003</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algebra ; Binomial ideals ; Binomials ; Cohen–Macaulay rings ; Collection ; Commutative rings and algebras ; Conditional independence ideals ; Edge ideals ; Exact sciences and technology ; General mathematics ; General, history and biography ; Generators ; Graphs ; Mathematical analysis ; Mathematical models ; Mathematics ; Number theory ; Numerical analysis ; Numerical analysis. Scientific computation ; Radicals ; Robustness ; Sciences and techniques of general use</subject><ispartof>Advances in applied mathematics, 2010-09, Vol.45 (3), p.317-333</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-38ceaebebf358b9677ff57e2d98c9a41d66ffd0b5a5e114595ab6900258727943</citedby><cites>FETCH-LOGICAL-c468t-38ceaebebf358b9677ff57e2d98c9a41d66ffd0b5a5e114595ab6900258727943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S019688581000014X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23146170$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Herzog, Jürgen</creatorcontrib><creatorcontrib>Hibi, Takayuki</creatorcontrib><creatorcontrib>Hreinsdóttir, Freyja</creatorcontrib><creatorcontrib>Kahle, Thomas</creatorcontrib><creatorcontrib>Rauh, Johannes</creatorcontrib><title>Binomial edge ideals and conditional independence statements</title><title>Advances in applied mathematics</title><description>We introduce binomial edge ideals attached to a simple graph G and study their algebraic properties. We characterize those graphs for which the quadratic generators form a Gröbner basis in a lexicographic order induced by a vertex labeling. Such graphs are chordal and claw-free. We give a reduced squarefree Gröbner basis for general G. It follows that all binomial edge ideals are radical ideals. Their minimal primes can be characterized by particular subsets of the vertices of G. We provide sufficient conditions for Cohen–Macaulayness for closed and nonclosed graphs. Binomial edge ideals arise naturally in the study of conditional independence ideals. Our results apply for the class of conditional independence ideals where a fixed binary variable is independent of a collection of other variables, given the remaining ones. In this case the primary decomposition has a natural statistical interpretation.</description><subject>Algebra</subject><subject>Binomial ideals</subject><subject>Binomials</subject><subject>Cohen–Macaulay rings</subject><subject>Collection</subject><subject>Commutative rings and algebras</subject><subject>Conditional independence ideals</subject><subject>Edge ideals</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Generators</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Radicals</subject><subject>Robustness</subject><subject>Sciences and techniques of general use</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIMouK7-AG-9iKfWSdu80IsuvmDBi55DmkwlS5uuTVfw35uyi0cvMwzzzQzzEXJJoaBA-c2mMKYvSkg10AKgOiILCgryEkR9TBZAFc-lZPKUnMW4AQBV8mpB7h58GHpvugzdJ2beoeliZoLL7BCcn_wQUs8Hh1tMIVjM4mQm7DFM8ZyctAnHi0Neko-nx_fVS75-e35d3a9zW3M55ZW0aLDBpq2YbBQXom2ZwNIpaZWpqeO8bR00zDCktGaKmYYrgJJJUQpVV0tyvd-7HYevHcZJ9z5a7DoTcNhFLVjFZSXoTNI9acchxhFbvR19b8YfTUHPovRGJ1F6FqWB6iQqzVwdtptoTdeOJlgf_wbLitacCkjc7Z7D9Oq3x1FH62cjzo9oJ-0G_8-VX5qpfRA</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Herzog, Jürgen</creator><creator>Hibi, Takayuki</creator><creator>Hreinsdóttir, Freyja</creator><creator>Kahle, Thomas</creator><creator>Rauh, Johannes</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100901</creationdate><title>Binomial edge ideals and conditional independence statements</title><author>Herzog, Jürgen ; Hibi, Takayuki ; Hreinsdóttir, Freyja ; Kahle, Thomas ; Rauh, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-38ceaebebf358b9677ff57e2d98c9a41d66ffd0b5a5e114595ab6900258727943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Binomial ideals</topic><topic>Binomials</topic><topic>Cohen–Macaulay rings</topic><topic>Collection</topic><topic>Commutative rings and algebras</topic><topic>Conditional independence ideals</topic><topic>Edge ideals</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Generators</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Radicals</topic><topic>Robustness</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herzog, Jürgen</creatorcontrib><creatorcontrib>Hibi, Takayuki</creatorcontrib><creatorcontrib>Hreinsdóttir, Freyja</creatorcontrib><creatorcontrib>Kahle, Thomas</creatorcontrib><creatorcontrib>Rauh, Johannes</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herzog, Jürgen</au><au>Hibi, Takayuki</au><au>Hreinsdóttir, Freyja</au><au>Kahle, Thomas</au><au>Rauh, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binomial edge ideals and conditional independence statements</atitle><jtitle>Advances in applied mathematics</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>45</volume><issue>3</issue><spage>317</spage><epage>333</epage><pages>317-333</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>We introduce binomial edge ideals attached to a simple graph G and study their algebraic properties. We characterize those graphs for which the quadratic generators form a Gröbner basis in a lexicographic order induced by a vertex labeling. Such graphs are chordal and claw-free. We give a reduced squarefree Gröbner basis for general G. It follows that all binomial edge ideals are radical ideals. Their minimal primes can be characterized by particular subsets of the vertices of G. We provide sufficient conditions for Cohen–Macaulayness for closed and nonclosed graphs. Binomial edge ideals arise naturally in the study of conditional independence ideals. Our results apply for the class of conditional independence ideals where a fixed binary variable is independent of a collection of other variables, given the remaining ones. In this case the primary decomposition has a natural statistical interpretation.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aam.2010.01.003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8858
ispartof Advances in applied mathematics, 2010-09, Vol.45 (3), p.317-333
issn 0196-8858
1090-2074
language eng
recordid cdi_proquest_miscellaneous_753683714
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algebra
Binomial ideals
Binomials
Cohen–Macaulay rings
Collection
Commutative rings and algebras
Conditional independence ideals
Edge ideals
Exact sciences and technology
General mathematics
General, history and biography
Generators
Graphs
Mathematical analysis
Mathematical models
Mathematics
Number theory
Numerical analysis
Numerical analysis. Scientific computation
Radicals
Robustness
Sciences and techniques of general use
title Binomial edge ideals and conditional independence statements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binomial%20edge%20ideals%20and%20conditional%20independence%20statements&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Herzog,%20J%C3%BCrgen&rft.date=2010-09-01&rft.volume=45&rft.issue=3&rft.spage=317&rft.epage=333&rft.pages=317-333&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1016/j.aam.2010.01.003&rft_dat=%3Cproquest_cross%3E753683714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753683714&rft_id=info:pmid/&rft_els_id=S019688581000014X&rfr_iscdi=true