Acoustic diffraction in a trifurcated waveguide with mean flow
Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform an...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2010-12, Vol.15 (12), p.3939-3949 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3949 |
---|---|
container_issue | 12 |
container_start_page | 3939 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 15 |
creator | Ayub, M. Tiwana, M.H. Mann, A.B. |
description | Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a
2
×
2
matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics. |
doi_str_mv | 10.1016/j.cnsns.2010.01.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753682302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570410000572</els_id><sourcerecordid>753682302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-e5a53194496837ca5fd821827f39837b766fc23679515379f117ed7ca436973c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wEtunnbNxybZHBSK-AUFL3oOMTvRlO1uTbIt_ntT69nTDMP7DDMPQpeU1JRQeb2q3ZCGVDNSJoTWhKkjNKOtaivFVHNcekJUJRRpTtFZSitSKC2aGbpduHFKOTjcBe-jdTmMAw4DtjjH4KfobIYO7-wWPqbQAd6F_InXYAfs-3F3jk687RNc_NU5enu4f717qpYvj893i2XlOBe5AmEFp7pptGy5clb4rmW0ZcpzXQbvSkrvGJdKCyq40p5SBV0JNlxqxR2fo6vD3k0cvyZI2axDctD3doByv1GCy5ZxwkqSH5IujilF8GYTw9rGb0OJ2csyK_Mry-xlGUJNkVWomwMF5YltgGiSCzA46EIEl003hn_5Hx5IcnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753682302</pqid></control><display><type>article</type><title>Acoustic diffraction in a trifurcated waveguide with mean flow</title><source>Elsevier ScienceDirect Journals</source><creator>Ayub, M. ; Tiwana, M.H. ; Mann, A.B.</creator><creatorcontrib>Ayub, M. ; Tiwana, M.H. ; Mann, A.B.</creatorcontrib><description>Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a
2
×
2
matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2010.01.027</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acoustics ; Convective flow ; Diffraction ; Ducts ; Expansion coefficients ; Integral transform ; Mathematical analysis ; Mathematical models ; Plane waves ; Pole removal technique ; Sound diffraction ; Thermal expansion ; Wiener-Hopf technique</subject><ispartof>Communications in nonlinear science & numerical simulation, 2010-12, Vol.15 (12), p.3939-3949</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-e5a53194496837ca5fd821827f39837b766fc23679515379f117ed7ca436973c3</citedby><cites>FETCH-LOGICAL-c335t-e5a53194496837ca5fd821827f39837b766fc23679515379f117ed7ca436973c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2010.01.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Ayub, M.</creatorcontrib><creatorcontrib>Tiwana, M.H.</creatorcontrib><creatorcontrib>Mann, A.B.</creatorcontrib><title>Acoustic diffraction in a trifurcated waveguide with mean flow</title><title>Communications in nonlinear science & numerical simulation</title><description>Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a
2
×
2
matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics.</description><subject>Acoustics</subject><subject>Convective flow</subject><subject>Diffraction</subject><subject>Ducts</subject><subject>Expansion coefficients</subject><subject>Integral transform</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Plane waves</subject><subject>Pole removal technique</subject><subject>Sound diffraction</subject><subject>Thermal expansion</subject><subject>Wiener-Hopf technique</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKu_wEtunnbNxybZHBSK-AUFL3oOMTvRlO1uTbIt_ntT69nTDMP7DDMPQpeU1JRQeb2q3ZCGVDNSJoTWhKkjNKOtaivFVHNcekJUJRRpTtFZSitSKC2aGbpduHFKOTjcBe-jdTmMAw4DtjjH4KfobIYO7-wWPqbQAd6F_InXYAfs-3F3jk687RNc_NU5enu4f717qpYvj893i2XlOBe5AmEFp7pptGy5clb4rmW0ZcpzXQbvSkrvGJdKCyq40p5SBV0JNlxqxR2fo6vD3k0cvyZI2axDctD3doByv1GCy5ZxwkqSH5IujilF8GYTw9rGb0OJ2csyK_Mry-xlGUJNkVWomwMF5YltgGiSCzA46EIEl003hn_5Hx5IcnA</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Ayub, M.</creator><creator>Tiwana, M.H.</creator><creator>Mann, A.B.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101201</creationdate><title>Acoustic diffraction in a trifurcated waveguide with mean flow</title><author>Ayub, M. ; Tiwana, M.H. ; Mann, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-e5a53194496837ca5fd821827f39837b766fc23679515379f117ed7ca436973c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustics</topic><topic>Convective flow</topic><topic>Diffraction</topic><topic>Ducts</topic><topic>Expansion coefficients</topic><topic>Integral transform</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Plane waves</topic><topic>Pole removal technique</topic><topic>Sound diffraction</topic><topic>Thermal expansion</topic><topic>Wiener-Hopf technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayub, M.</creatorcontrib><creatorcontrib>Tiwana, M.H.</creatorcontrib><creatorcontrib>Mann, A.B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayub, M.</au><au>Tiwana, M.H.</au><au>Mann, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic diffraction in a trifurcated waveguide with mean flow</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>15</volume><issue>12</issue><spage>3939</spage><epage>3949</epage><pages>3939-3949</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a
2
×
2
matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2010.01.027</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2010-12, Vol.15 (12), p.3939-3949 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_miscellaneous_753682302 |
source | Elsevier ScienceDirect Journals |
subjects | Acoustics Convective flow Diffraction Ducts Expansion coefficients Integral transform Mathematical analysis Mathematical models Plane waves Pole removal technique Sound diffraction Thermal expansion Wiener-Hopf technique |
title | Acoustic diffraction in a trifurcated waveguide with mean flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20diffraction%20in%20a%20trifurcated%20waveguide%20with%20mean%20flow&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Ayub,%20M.&rft.date=2010-12-01&rft.volume=15&rft.issue=12&rft.spage=3939&rft.epage=3949&rft.pages=3939-3949&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2010.01.027&rft_dat=%3Cproquest_cross%3E753682302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753682302&rft_id=info:pmid/&rft_els_id=S1007570410000572&rfr_iscdi=true |