Acoustic diffraction in a trifurcated waveguide with mean flow

Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2010-12, Vol.15 (12), p.3939-3949
Hauptverfasser: Ayub, M., Tiwana, M.H., Mann, A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3949
container_issue 12
container_start_page 3939
container_title Communications in nonlinear science & numerical simulation
container_volume 15
creator Ayub, M.
Tiwana, M.H.
Mann, A.B.
description Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a 2 × 2 matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics.
doi_str_mv 10.1016/j.cnsns.2010.01.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753682302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570410000572</els_id><sourcerecordid>753682302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-e5a53194496837ca5fd821827f39837b766fc23679515379f117ed7ca436973c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wEtunnbNxybZHBSK-AUFL3oOMTvRlO1uTbIt_ntT69nTDMP7DDMPQpeU1JRQeb2q3ZCGVDNSJoTWhKkjNKOtaivFVHNcekJUJRRpTtFZSitSKC2aGbpduHFKOTjcBe-jdTmMAw4DtjjH4KfobIYO7-wWPqbQAd6F_InXYAfs-3F3jk687RNc_NU5enu4f717qpYvj893i2XlOBe5AmEFp7pptGy5clb4rmW0ZcpzXQbvSkrvGJdKCyq40p5SBV0JNlxqxR2fo6vD3k0cvyZI2axDctD3doByv1GCy5ZxwkqSH5IujilF8GYTw9rGb0OJ2csyK_Mry-xlGUJNkVWomwMF5YltgGiSCzA46EIEl003hn_5Hx5IcnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753682302</pqid></control><display><type>article</type><title>Acoustic diffraction in a trifurcated waveguide with mean flow</title><source>Elsevier ScienceDirect Journals</source><creator>Ayub, M. ; Tiwana, M.H. ; Mann, A.B.</creator><creatorcontrib>Ayub, M. ; Tiwana, M.H. ; Mann, A.B.</creatorcontrib><description>Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a 2 × 2 matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2010.01.027</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acoustics ; Convective flow ; Diffraction ; Ducts ; Expansion coefficients ; Integral transform ; Mathematical analysis ; Mathematical models ; Plane waves ; Pole removal technique ; Sound diffraction ; Thermal expansion ; Wiener-Hopf technique</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2010-12, Vol.15 (12), p.3939-3949</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-e5a53194496837ca5fd821827f39837b766fc23679515379f117ed7ca436973c3</citedby><cites>FETCH-LOGICAL-c335t-e5a53194496837ca5fd821827f39837b766fc23679515379f117ed7ca436973c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2010.01.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Ayub, M.</creatorcontrib><creatorcontrib>Tiwana, M.H.</creatorcontrib><creatorcontrib>Mann, A.B.</creatorcontrib><title>Acoustic diffraction in a trifurcated waveguide with mean flow</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a 2 × 2 matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics.</description><subject>Acoustics</subject><subject>Convective flow</subject><subject>Diffraction</subject><subject>Ducts</subject><subject>Expansion coefficients</subject><subject>Integral transform</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Plane waves</subject><subject>Pole removal technique</subject><subject>Sound diffraction</subject><subject>Thermal expansion</subject><subject>Wiener-Hopf technique</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKu_wEtunnbNxybZHBSK-AUFL3oOMTvRlO1uTbIt_ntT69nTDMP7DDMPQpeU1JRQeb2q3ZCGVDNSJoTWhKkjNKOtaivFVHNcekJUJRRpTtFZSitSKC2aGbpduHFKOTjcBe-jdTmMAw4DtjjH4KfobIYO7-wWPqbQAd6F_InXYAfs-3F3jk687RNc_NU5enu4f717qpYvj893i2XlOBe5AmEFp7pptGy5clb4rmW0ZcpzXQbvSkrvGJdKCyq40p5SBV0JNlxqxR2fo6vD3k0cvyZI2axDctD3doByv1GCy5ZxwkqSH5IujilF8GYTw9rGb0OJ2csyK_Mry-xlGUJNkVWomwMF5YltgGiSCzA46EIEl003hn_5Hx5IcnA</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Ayub, M.</creator><creator>Tiwana, M.H.</creator><creator>Mann, A.B.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101201</creationdate><title>Acoustic diffraction in a trifurcated waveguide with mean flow</title><author>Ayub, M. ; Tiwana, M.H. ; Mann, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-e5a53194496837ca5fd821827f39837b766fc23679515379f117ed7ca436973c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustics</topic><topic>Convective flow</topic><topic>Diffraction</topic><topic>Ducts</topic><topic>Expansion coefficients</topic><topic>Integral transform</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Plane waves</topic><topic>Pole removal technique</topic><topic>Sound diffraction</topic><topic>Thermal expansion</topic><topic>Wiener-Hopf technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayub, M.</creatorcontrib><creatorcontrib>Tiwana, M.H.</creatorcontrib><creatorcontrib>Mann, A.B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayub, M.</au><au>Tiwana, M.H.</au><au>Mann, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic diffraction in a trifurcated waveguide with mean flow</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>15</volume><issue>12</issue><spage>3939</spage><epage>3949</epage><pages>3939-3949</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a 2 × 2 matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2010.01.027</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2010-12, Vol.15 (12), p.3939-3949
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_miscellaneous_753682302
source Elsevier ScienceDirect Journals
subjects Acoustics
Convective flow
Diffraction
Ducts
Expansion coefficients
Integral transform
Mathematical analysis
Mathematical models
Plane waves
Pole removal technique
Sound diffraction
Thermal expansion
Wiener-Hopf technique
title Acoustic diffraction in a trifurcated waveguide with mean flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20diffraction%20in%20a%20trifurcated%20waveguide%20with%20mean%20flow&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Ayub,%20M.&rft.date=2010-12-01&rft.volume=15&rft.issue=12&rft.spage=3939&rft.epage=3949&rft.pages=3939-3949&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2010.01.027&rft_dat=%3Cproquest_cross%3E753682302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753682302&rft_id=info:pmid/&rft_els_id=S1007570410000572&rfr_iscdi=true