MD simulation of phase transformations in liquid carbon
The supercooled liquid of carbon is investigated by means of molecular-dynamics simulation. The dynamics of a glass and a supercooled liquid is compared and the glass transition temperature is determined by two methods: analyzing (i) the temperature dependence of thermodynamic coefficients and (ii)...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2010-07, Vol.19 (7), p.1058-1064 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1064 |
---|---|
container_issue | 7 |
container_start_page | 1058 |
container_title | Diamond and related materials |
container_volume | 19 |
creator | Byshkin, M.S. Bakai, A.S. Turkin, A.A. |
description | The supercooled liquid of carbon is investigated by means of molecular-dynamics simulation. The dynamics of a glass and a supercooled liquid is compared and the glass transition temperature is determined by two methods: analyzing (i) the temperature dependence of thermodynamic coefficients and (ii) relaxation time of liquid. The pressure dependences of the glass transition temperature and the diamond melting temperature are found. The percolation properties of structures of sp
3 atoms formed in liquid carbon with different numbers of embedded diamond crystallites are investigated. It is shown that the percolation cluster of 4-fold coordinated atoms forms when their total concentration in structure reaches a value close to 0.38 irrespective of the number of embedded crystallites. It turns out that the stability of diamond crystallites embedded into supercooled carbon liquid correlates with the presence of the percolation cluster of 4-fold coordinated atoms. The correspondence of diamond crystallite stability with percolation disappears at a temperature more than 5000
K. The topological criterion for the definition of tetrahedral amorphous carbon is proposed: amorphous carbon is tetrahedral if a percolation cluster exists in it and the embedded diamond crystallites are stable. |
doi_str_mv | 10.1016/j.diamond.2010.02.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753681972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963510001251</els_id><sourcerecordid>753681972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-6754bf84163e3174782c1307773afa2ab84ec89c79ed417c0adcae5a881a4e9c3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKEbcdWaV5tkJTI-YcSNrsOd9BYztM1M0gr-ezvO4NbVhcN37uEcQi4ZLRhl1c26qD10oa8LTieN8oJKeURmTCuTU1rxYzKjhpe5qUR5Ss5SWlPKuJFsRtTrfZZ8N7Yw-NBnock2n5AwGyL0qQmx-9VT5vus9dvR15mDuAr9OTlpoE14cbhz8vH48L54zpdvTy-Lu2XuhGJDXqlSrhotWSVQMCWV5o4JqpQS0ACHlZbotHHKYC2ZchRqB1iC1gwkGifm5Hr_dxPDdsQ02M4nh20LPYYxWVWKSjOj-ESWe9LFkFLExm6i7yB-W0btbie7toed7G4nS7mddpp8V4cESA7aZirufPozc24oF9pM3O2ew6nul8dok_PYO6x9RDfYOvh_kn4ANeKAGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753681972</pqid></control><display><type>article</type><title>MD simulation of phase transformations in liquid carbon</title><source>Access via ScienceDirect (Elsevier)</source><creator>Byshkin, M.S. ; Bakai, A.S. ; Turkin, A.A.</creator><creatorcontrib>Byshkin, M.S. ; Bakai, A.S. ; Turkin, A.A.</creatorcontrib><description>The supercooled liquid of carbon is investigated by means of molecular-dynamics simulation. The dynamics of a glass and a supercooled liquid is compared and the glass transition temperature is determined by two methods: analyzing (i) the temperature dependence of thermodynamic coefficients and (ii) relaxation time of liquid. The pressure dependences of the glass transition temperature and the diamond melting temperature are found. The percolation properties of structures of sp
3 atoms formed in liquid carbon with different numbers of embedded diamond crystallites are investigated. It is shown that the percolation cluster of 4-fold coordinated atoms forms when their total concentration in structure reaches a value close to 0.38 irrespective of the number of embedded crystallites. It turns out that the stability of diamond crystallites embedded into supercooled carbon liquid correlates with the presence of the percolation cluster of 4-fold coordinated atoms. The correspondence of diamond crystallite stability with percolation disappears at a temperature more than 5000
K. The topological criterion for the definition of tetrahedral amorphous carbon is proposed: amorphous carbon is tetrahedral if a percolation cluster exists in it and the embedded diamond crystallites are stable.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2010.02.044</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atomic structure ; Carbon ; Clusters ; Composition and phase identification ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallites ; Dynamics ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Liquid carbon ; Liquids ; Materials science ; Nanocrystals ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Percolation ; Phase transformation ; Physics ; Simulation ; Specific materials ; Stability ; Surface and interface electron states ; Surface states, band structure, electron density of states ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology</subject><ispartof>Diamond and related materials, 2010-07, Vol.19 (7), p.1058-1064</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-6754bf84163e3174782c1307773afa2ab84ec89c79ed417c0adcae5a881a4e9c3</citedby><cites>FETCH-LOGICAL-c371t-6754bf84163e3174782c1307773afa2ab84ec89c79ed417c0adcae5a881a4e9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2010.02.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22902389$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Byshkin, M.S.</creatorcontrib><creatorcontrib>Bakai, A.S.</creatorcontrib><creatorcontrib>Turkin, A.A.</creatorcontrib><title>MD simulation of phase transformations in liquid carbon</title><title>Diamond and related materials</title><description>The supercooled liquid of carbon is investigated by means of molecular-dynamics simulation. The dynamics of a glass and a supercooled liquid is compared and the glass transition temperature is determined by two methods: analyzing (i) the temperature dependence of thermodynamic coefficients and (ii) relaxation time of liquid. The pressure dependences of the glass transition temperature and the diamond melting temperature are found. The percolation properties of structures of sp
3 atoms formed in liquid carbon with different numbers of embedded diamond crystallites are investigated. It is shown that the percolation cluster of 4-fold coordinated atoms forms when their total concentration in structure reaches a value close to 0.38 irrespective of the number of embedded crystallites. It turns out that the stability of diamond crystallites embedded into supercooled carbon liquid correlates with the presence of the percolation cluster of 4-fold coordinated atoms. The correspondence of diamond crystallite stability with percolation disappears at a temperature more than 5000
K. The topological criterion for the definition of tetrahedral amorphous carbon is proposed: amorphous carbon is tetrahedral if a percolation cluster exists in it and the embedded diamond crystallites are stable.</description><subject>Atomic structure</subject><subject>Carbon</subject><subject>Clusters</subject><subject>Composition and phase identification</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallites</subject><subject>Dynamics</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Liquid carbon</subject><subject>Liquids</subject><subject>Materials science</subject><subject>Nanocrystals</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Percolation</subject><subject>Phase transformation</subject><subject>Physics</subject><subject>Simulation</subject><subject>Specific materials</subject><subject>Stability</subject><subject>Surface and interface electron states</subject><subject>Surface states, band structure, electron density of states</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKEbcdWaV5tkJTI-YcSNrsOd9BYztM1M0gr-ezvO4NbVhcN37uEcQi4ZLRhl1c26qD10oa8LTieN8oJKeURmTCuTU1rxYzKjhpe5qUR5Ss5SWlPKuJFsRtTrfZZ8N7Yw-NBnock2n5AwGyL0qQmx-9VT5vus9dvR15mDuAr9OTlpoE14cbhz8vH48L54zpdvTy-Lu2XuhGJDXqlSrhotWSVQMCWV5o4JqpQS0ACHlZbotHHKYC2ZchRqB1iC1gwkGifm5Hr_dxPDdsQ02M4nh20LPYYxWVWKSjOj-ESWe9LFkFLExm6i7yB-W0btbie7toed7G4nS7mddpp8V4cESA7aZirufPozc24oF9pM3O2ew6nul8dok_PYO6x9RDfYOvh_kn4ANeKAGg</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Byshkin, M.S.</creator><creator>Bakai, A.S.</creator><creator>Turkin, A.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100701</creationdate><title>MD simulation of phase transformations in liquid carbon</title><author>Byshkin, M.S. ; Bakai, A.S. ; Turkin, A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-6754bf84163e3174782c1307773afa2ab84ec89c79ed417c0adcae5a881a4e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic structure</topic><topic>Carbon</topic><topic>Clusters</topic><topic>Composition and phase identification</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallites</topic><topic>Dynamics</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Liquid carbon</topic><topic>Liquids</topic><topic>Materials science</topic><topic>Nanocrystals</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Percolation</topic><topic>Phase transformation</topic><topic>Physics</topic><topic>Simulation</topic><topic>Specific materials</topic><topic>Stability</topic><topic>Surface and interface electron states</topic><topic>Surface states, band structure, electron density of states</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byshkin, M.S.</creatorcontrib><creatorcontrib>Bakai, A.S.</creatorcontrib><creatorcontrib>Turkin, A.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byshkin, M.S.</au><au>Bakai, A.S.</au><au>Turkin, A.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MD simulation of phase transformations in liquid carbon</atitle><jtitle>Diamond and related materials</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>19</volume><issue>7</issue><spage>1058</spage><epage>1064</epage><pages>1058-1064</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>The supercooled liquid of carbon is investigated by means of molecular-dynamics simulation. The dynamics of a glass and a supercooled liquid is compared and the glass transition temperature is determined by two methods: analyzing (i) the temperature dependence of thermodynamic coefficients and (ii) relaxation time of liquid. The pressure dependences of the glass transition temperature and the diamond melting temperature are found. The percolation properties of structures of sp
3 atoms formed in liquid carbon with different numbers of embedded diamond crystallites are investigated. It is shown that the percolation cluster of 4-fold coordinated atoms forms when their total concentration in structure reaches a value close to 0.38 irrespective of the number of embedded crystallites. It turns out that the stability of diamond crystallites embedded into supercooled carbon liquid correlates with the presence of the percolation cluster of 4-fold coordinated atoms. The correspondence of diamond crystallite stability with percolation disappears at a temperature more than 5000
K. The topological criterion for the definition of tetrahedral amorphous carbon is proposed: amorphous carbon is tetrahedral if a percolation cluster exists in it and the embedded diamond crystallites are stable.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2010.02.044</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2010-07, Vol.19 (7), p.1058-1064 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_proquest_miscellaneous_753681972 |
source | Access via ScienceDirect (Elsevier) |
subjects | Atomic structure Carbon Clusters Composition and phase identification Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crystallites Dynamics Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Fullerenes and related materials diamonds, graphite Liquid carbon Liquids Materials science Nanocrystals Nanoscale materials and structures: fabrication and characterization Other topics in nanoscale materials and structures Percolation Phase transformation Physics Simulation Specific materials Stability Surface and interface electron states Surface states, band structure, electron density of states Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology |
title | MD simulation of phase transformations in liquid carbon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MD%20simulation%20of%20phase%20transformations%20in%20liquid%20carbon&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Byshkin,%20M.S.&rft.date=2010-07-01&rft.volume=19&rft.issue=7&rft.spage=1058&rft.epage=1064&rft.pages=1058-1064&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2010.02.044&rft_dat=%3Cproquest_cross%3E753681972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753681972&rft_id=info:pmid/&rft_els_id=S0925963510001251&rfr_iscdi=true |