MD simulation of phase transformations in liquid carbon

The supercooled liquid of carbon is investigated by means of molecular-dynamics simulation. The dynamics of a glass and a supercooled liquid is compared and the glass transition temperature is determined by two methods: analyzing (i) the temperature dependence of thermodynamic coefficients and (ii)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2010-07, Vol.19 (7), p.1058-1064
Hauptverfasser: Byshkin, M.S., Bakai, A.S., Turkin, A.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1064
container_issue 7
container_start_page 1058
container_title Diamond and related materials
container_volume 19
creator Byshkin, M.S.
Bakai, A.S.
Turkin, A.A.
description The supercooled liquid of carbon is investigated by means of molecular-dynamics simulation. The dynamics of a glass and a supercooled liquid is compared and the glass transition temperature is determined by two methods: analyzing (i) the temperature dependence of thermodynamic coefficients and (ii) relaxation time of liquid. The pressure dependences of the glass transition temperature and the diamond melting temperature are found. The percolation properties of structures of sp 3 atoms formed in liquid carbon with different numbers of embedded diamond crystallites are investigated. It is shown that the percolation cluster of 4-fold coordinated atoms forms when their total concentration in structure reaches a value close to 0.38 irrespective of the number of embedded crystallites. It turns out that the stability of diamond crystallites embedded into supercooled carbon liquid correlates with the presence of the percolation cluster of 4-fold coordinated atoms. The correspondence of diamond crystallite stability with percolation disappears at a temperature more than 5000 K. The topological criterion for the definition of tetrahedral amorphous carbon is proposed: amorphous carbon is tetrahedral if a percolation cluster exists in it and the embedded diamond crystallites are stable.
doi_str_mv 10.1016/j.diamond.2010.02.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753681972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963510001251</els_id><sourcerecordid>753681972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-6754bf84163e3174782c1307773afa2ab84ec89c79ed417c0adcae5a881a4e9c3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKEbcdWaV5tkJTI-YcSNrsOd9BYztM1M0gr-ezvO4NbVhcN37uEcQi4ZLRhl1c26qD10oa8LTieN8oJKeURmTCuTU1rxYzKjhpe5qUR5Ss5SWlPKuJFsRtTrfZZ8N7Yw-NBnock2n5AwGyL0qQmx-9VT5vus9dvR15mDuAr9OTlpoE14cbhz8vH48L54zpdvTy-Lu2XuhGJDXqlSrhotWSVQMCWV5o4JqpQS0ACHlZbotHHKYC2ZchRqB1iC1gwkGifm5Hr_dxPDdsQ02M4nh20LPYYxWVWKSjOj-ESWe9LFkFLExm6i7yB-W0btbie7toed7G4nS7mddpp8V4cESA7aZirufPozc24oF9pM3O2ew6nul8dok_PYO6x9RDfYOvh_kn4ANeKAGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753681972</pqid></control><display><type>article</type><title>MD simulation of phase transformations in liquid carbon</title><source>Access via ScienceDirect (Elsevier)</source><creator>Byshkin, M.S. ; Bakai, A.S. ; Turkin, A.A.</creator><creatorcontrib>Byshkin, M.S. ; Bakai, A.S. ; Turkin, A.A.</creatorcontrib><description>The supercooled liquid of carbon is investigated by means of molecular-dynamics simulation. The dynamics of a glass and a supercooled liquid is compared and the glass transition temperature is determined by two methods: analyzing (i) the temperature dependence of thermodynamic coefficients and (ii) relaxation time of liquid. The pressure dependences of the glass transition temperature and the diamond melting temperature are found. The percolation properties of structures of sp 3 atoms formed in liquid carbon with different numbers of embedded diamond crystallites are investigated. It is shown that the percolation cluster of 4-fold coordinated atoms forms when their total concentration in structure reaches a value close to 0.38 irrespective of the number of embedded crystallites. It turns out that the stability of diamond crystallites embedded into supercooled carbon liquid correlates with the presence of the percolation cluster of 4-fold coordinated atoms. The correspondence of diamond crystallite stability with percolation disappears at a temperature more than 5000 K. The topological criterion for the definition of tetrahedral amorphous carbon is proposed: amorphous carbon is tetrahedral if a percolation cluster exists in it and the embedded diamond crystallites are stable.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2010.02.044</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atomic structure ; Carbon ; Clusters ; Composition and phase identification ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallites ; Dynamics ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Liquid carbon ; Liquids ; Materials science ; Nanocrystals ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Percolation ; Phase transformation ; Physics ; Simulation ; Specific materials ; Stability ; Surface and interface electron states ; Surface states, band structure, electron density of states ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology</subject><ispartof>Diamond and related materials, 2010-07, Vol.19 (7), p.1058-1064</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-6754bf84163e3174782c1307773afa2ab84ec89c79ed417c0adcae5a881a4e9c3</citedby><cites>FETCH-LOGICAL-c371t-6754bf84163e3174782c1307773afa2ab84ec89c79ed417c0adcae5a881a4e9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2010.02.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22902389$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Byshkin, M.S.</creatorcontrib><creatorcontrib>Bakai, A.S.</creatorcontrib><creatorcontrib>Turkin, A.A.</creatorcontrib><title>MD simulation of phase transformations in liquid carbon</title><title>Diamond and related materials</title><description>The supercooled liquid of carbon is investigated by means of molecular-dynamics simulation. The dynamics of a glass and a supercooled liquid is compared and the glass transition temperature is determined by two methods: analyzing (i) the temperature dependence of thermodynamic coefficients and (ii) relaxation time of liquid. The pressure dependences of the glass transition temperature and the diamond melting temperature are found. The percolation properties of structures of sp 3 atoms formed in liquid carbon with different numbers of embedded diamond crystallites are investigated. It is shown that the percolation cluster of 4-fold coordinated atoms forms when their total concentration in structure reaches a value close to 0.38 irrespective of the number of embedded crystallites. It turns out that the stability of diamond crystallites embedded into supercooled carbon liquid correlates with the presence of the percolation cluster of 4-fold coordinated atoms. The correspondence of diamond crystallite stability with percolation disappears at a temperature more than 5000 K. The topological criterion for the definition of tetrahedral amorphous carbon is proposed: amorphous carbon is tetrahedral if a percolation cluster exists in it and the embedded diamond crystallites are stable.</description><subject>Atomic structure</subject><subject>Carbon</subject><subject>Clusters</subject><subject>Composition and phase identification</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallites</subject><subject>Dynamics</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Liquid carbon</subject><subject>Liquids</subject><subject>Materials science</subject><subject>Nanocrystals</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Percolation</subject><subject>Phase transformation</subject><subject>Physics</subject><subject>Simulation</subject><subject>Specific materials</subject><subject>Stability</subject><subject>Surface and interface electron states</subject><subject>Surface states, band structure, electron density of states</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKEbcdWaV5tkJTI-YcSNrsOd9BYztM1M0gr-ezvO4NbVhcN37uEcQi4ZLRhl1c26qD10oa8LTieN8oJKeURmTCuTU1rxYzKjhpe5qUR5Ss5SWlPKuJFsRtTrfZZ8N7Yw-NBnock2n5AwGyL0qQmx-9VT5vus9dvR15mDuAr9OTlpoE14cbhz8vH48L54zpdvTy-Lu2XuhGJDXqlSrhotWSVQMCWV5o4JqpQS0ACHlZbotHHKYC2ZchRqB1iC1gwkGifm5Hr_dxPDdsQ02M4nh20LPYYxWVWKSjOj-ESWe9LFkFLExm6i7yB-W0btbie7toed7G4nS7mddpp8V4cESA7aZirufPozc24oF9pM3O2ew6nul8dok_PYO6x9RDfYOvh_kn4ANeKAGg</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Byshkin, M.S.</creator><creator>Bakai, A.S.</creator><creator>Turkin, A.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100701</creationdate><title>MD simulation of phase transformations in liquid carbon</title><author>Byshkin, M.S. ; Bakai, A.S. ; Turkin, A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-6754bf84163e3174782c1307773afa2ab84ec89c79ed417c0adcae5a881a4e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic structure</topic><topic>Carbon</topic><topic>Clusters</topic><topic>Composition and phase identification</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallites</topic><topic>Dynamics</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Liquid carbon</topic><topic>Liquids</topic><topic>Materials science</topic><topic>Nanocrystals</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Percolation</topic><topic>Phase transformation</topic><topic>Physics</topic><topic>Simulation</topic><topic>Specific materials</topic><topic>Stability</topic><topic>Surface and interface electron states</topic><topic>Surface states, band structure, electron density of states</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byshkin, M.S.</creatorcontrib><creatorcontrib>Bakai, A.S.</creatorcontrib><creatorcontrib>Turkin, A.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byshkin, M.S.</au><au>Bakai, A.S.</au><au>Turkin, A.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MD simulation of phase transformations in liquid carbon</atitle><jtitle>Diamond and related materials</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>19</volume><issue>7</issue><spage>1058</spage><epage>1064</epage><pages>1058-1064</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>The supercooled liquid of carbon is investigated by means of molecular-dynamics simulation. The dynamics of a glass and a supercooled liquid is compared and the glass transition temperature is determined by two methods: analyzing (i) the temperature dependence of thermodynamic coefficients and (ii) relaxation time of liquid. The pressure dependences of the glass transition temperature and the diamond melting temperature are found. The percolation properties of structures of sp 3 atoms formed in liquid carbon with different numbers of embedded diamond crystallites are investigated. It is shown that the percolation cluster of 4-fold coordinated atoms forms when their total concentration in structure reaches a value close to 0.38 irrespective of the number of embedded crystallites. It turns out that the stability of diamond crystallites embedded into supercooled carbon liquid correlates with the presence of the percolation cluster of 4-fold coordinated atoms. The correspondence of diamond crystallite stability with percolation disappears at a temperature more than 5000 K. The topological criterion for the definition of tetrahedral amorphous carbon is proposed: amorphous carbon is tetrahedral if a percolation cluster exists in it and the embedded diamond crystallites are stable.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2010.02.044</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2010-07, Vol.19 (7), p.1058-1064
issn 0925-9635
1879-0062
language eng
recordid cdi_proquest_miscellaneous_753681972
source Access via ScienceDirect (Elsevier)
subjects Atomic structure
Carbon
Clusters
Composition and phase identification
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystallites
Dynamics
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Liquid carbon
Liquids
Materials science
Nanocrystals
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Percolation
Phase transformation
Physics
Simulation
Specific materials
Stability
Surface and interface electron states
Surface states, band structure, electron density of states
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
title MD simulation of phase transformations in liquid carbon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MD%20simulation%20of%20phase%20transformations%20in%20liquid%20carbon&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Byshkin,%20M.S.&rft.date=2010-07-01&rft.volume=19&rft.issue=7&rft.spage=1058&rft.epage=1064&rft.pages=1058-1064&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2010.02.044&rft_dat=%3Cproquest_cross%3E753681972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753681972&rft_id=info:pmid/&rft_els_id=S0925963510001251&rfr_iscdi=true