Iterative colour correction of multicamera systems using corresponding feature points

Multiview images captured by multicamera systems are generally not uniform in colour domain. In this paper, we propose a novel colour correction method of multicamera systems that can (i) be applied to not only dense multicamera system, but also sparse multicamera configuration and (ii) obtain an av...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visual communication and image representation 2010-07, Vol.21 (5), p.377-391
Hauptverfasser: Panahpour Tehrani, Mehrdad, Ishikawa, Akio, Sakazawa, Shigeyuki, Koike, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 5
container_start_page 377
container_title Journal of visual communication and image representation
container_volume 21
creator Panahpour Tehrani, Mehrdad
Ishikawa, Akio
Sakazawa, Shigeyuki
Koike, Atsushi
description Multiview images captured by multicamera systems are generally not uniform in colour domain. In this paper, we propose a novel colour correction method of multicamera systems that can (i) be applied to not only dense multicamera system, but also sparse multicamera configuration and (ii) obtain an average colour pattern among all cameras. Our proposed colour correction method starts from any camera on the array sequentially, following a certain path, for pairs of cameras, until it reaches the starting point and triggers several iterations. The iteration stops when the correction applied to the images becomes small enough. We propose to calculate the colour correction transformation based on energy minimisation using a dynamic programming of a nonlinearly weighted Gaussian-based kernel density function of geometrically corresponding feature points, obtained by the modified scale invariant feature transformation (SIFT) method, from several time instances and their Gaussian-filtered images. This approach guarantees the convergence of the iteration procedure without any visible colour distortion. The colour correction is done for each colour channel independently. The process is entirely automatic, after estimation of the parameters through the algorithm. Experimental results show that the proposed iteration-based algorithm can colour-correct the dense/sparse multicamera system. The correction is always converged with average colour intensity among viewpoint, and out-performs the conventional method.
doi_str_mv 10.1016/j.jvcir.2010.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753671036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047320310000489</els_id><sourcerecordid>753671036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d280a1487b31833e6c16212e04a2975e2656799166d00c8f1982132293ab93a43</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSsEEmPwCbj0xqnDidu0PXBAE38mTeLCzlGWuihV25QknbRvT0s5c7Cebb1nyb8oumewYcDEY7NpTtq4DYdpA7gByC-iFYMyS0rIxeXcp3mCHPA6uvG-AQAsMV1Fh10gp4I5Uaxta0c3iXOkg7F9bOu4G9tgtOomU-zPPlDn49Gb_mvx-cH21TzVpMLoKB6s6YO_ja5q1Xq6-9N1dHh9-dy-J_uPt932eZ9oxCwkFS9AsbTIj8gKRBKaCc44Qap4mWfERSbysmRCVAC6qFlZcIacl6iOU6W4jh6Wu4Oz3yP5IDvjNbWt6smOXuYZipwBismJi1M7672jWg7OdMqdJQM5M5SN_GUoZ4YSUE4Mp9TTkqLpiZMhJ7021GuqzMxIVtb8m_8Bsml7pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753671036</pqid></control><display><type>article</type><title>Iterative colour correction of multicamera systems using corresponding feature points</title><source>Elsevier ScienceDirect Journals</source><creator>Panahpour Tehrani, Mehrdad ; Ishikawa, Akio ; Sakazawa, Shigeyuki ; Koike, Atsushi</creator><creatorcontrib>Panahpour Tehrani, Mehrdad ; Ishikawa, Akio ; Sakazawa, Shigeyuki ; Koike, Atsushi</creatorcontrib><description>Multiview images captured by multicamera systems are generally not uniform in colour domain. In this paper, we propose a novel colour correction method of multicamera systems that can (i) be applied to not only dense multicamera system, but also sparse multicamera configuration and (ii) obtain an average colour pattern among all cameras. Our proposed colour correction method starts from any camera on the array sequentially, following a certain path, for pairs of cameras, until it reaches the starting point and triggers several iterations. The iteration stops when the correction applied to the images becomes small enough. We propose to calculate the colour correction transformation based on energy minimisation using a dynamic programming of a nonlinearly weighted Gaussian-based kernel density function of geometrically corresponding feature points, obtained by the modified scale invariant feature transformation (SIFT) method, from several time instances and their Gaussian-filtered images. This approach guarantees the convergence of the iteration procedure without any visible colour distortion. The colour correction is done for each colour channel independently. The process is entirely automatic, after estimation of the parameters through the algorithm. Experimental results show that the proposed iteration-based algorithm can colour-correct the dense/sparse multicamera system. The correction is always converged with average colour intensity among viewpoint, and out-performs the conventional method.</description><identifier>ISSN: 1047-3203</identifier><identifier>EISSN: 1095-9076</identifier><identifier>DOI: 10.1016/j.jvcir.2010.03.007</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Arrays ; Average colour intensities ; Cameras ; Color ; Colour ; Colour correction ; Corresponding intensities ; Density ; Dynamic programming ; Gaussian kernel density function ; Nonlinear weighting ; SIFT ; Suppressing outliers ; Transformations</subject><ispartof>Journal of visual communication and image representation, 2010-07, Vol.21 (5), p.377-391</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d280a1487b31833e6c16212e04a2975e2656799166d00c8f1982132293ab93a43</citedby><cites>FETCH-LOGICAL-c335t-d280a1487b31833e6c16212e04a2975e2656799166d00c8f1982132293ab93a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047320310000489$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Panahpour Tehrani, Mehrdad</creatorcontrib><creatorcontrib>Ishikawa, Akio</creatorcontrib><creatorcontrib>Sakazawa, Shigeyuki</creatorcontrib><creatorcontrib>Koike, Atsushi</creatorcontrib><title>Iterative colour correction of multicamera systems using corresponding feature points</title><title>Journal of visual communication and image representation</title><description>Multiview images captured by multicamera systems are generally not uniform in colour domain. In this paper, we propose a novel colour correction method of multicamera systems that can (i) be applied to not only dense multicamera system, but also sparse multicamera configuration and (ii) obtain an average colour pattern among all cameras. Our proposed colour correction method starts from any camera on the array sequentially, following a certain path, for pairs of cameras, until it reaches the starting point and triggers several iterations. The iteration stops when the correction applied to the images becomes small enough. We propose to calculate the colour correction transformation based on energy minimisation using a dynamic programming of a nonlinearly weighted Gaussian-based kernel density function of geometrically corresponding feature points, obtained by the modified scale invariant feature transformation (SIFT) method, from several time instances and their Gaussian-filtered images. This approach guarantees the convergence of the iteration procedure without any visible colour distortion. The colour correction is done for each colour channel independently. The process is entirely automatic, after estimation of the parameters through the algorithm. Experimental results show that the proposed iteration-based algorithm can colour-correct the dense/sparse multicamera system. The correction is always converged with average colour intensity among viewpoint, and out-performs the conventional method.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Average colour intensities</subject><subject>Cameras</subject><subject>Color</subject><subject>Colour</subject><subject>Colour correction</subject><subject>Corresponding intensities</subject><subject>Density</subject><subject>Dynamic programming</subject><subject>Gaussian kernel density function</subject><subject>Nonlinear weighting</subject><subject>SIFT</subject><subject>Suppressing outliers</subject><subject>Transformations</subject><issn>1047-3203</issn><issn>1095-9076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSsEEmPwCbj0xqnDidu0PXBAE38mTeLCzlGWuihV25QknbRvT0s5c7Cebb1nyb8oumewYcDEY7NpTtq4DYdpA7gByC-iFYMyS0rIxeXcp3mCHPA6uvG-AQAsMV1Fh10gp4I5Uaxta0c3iXOkg7F9bOu4G9tgtOomU-zPPlDn49Gb_mvx-cH21TzVpMLoKB6s6YO_ja5q1Xq6-9N1dHh9-dy-J_uPt932eZ9oxCwkFS9AsbTIj8gKRBKaCc44Qap4mWfERSbysmRCVAC6qFlZcIacl6iOU6W4jh6Wu4Oz3yP5IDvjNbWt6smOXuYZipwBismJi1M7672jWg7OdMqdJQM5M5SN_GUoZ4YSUE4Mp9TTkqLpiZMhJ7021GuqzMxIVtb8m_8Bsml7pQ</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Panahpour Tehrani, Mehrdad</creator><creator>Ishikawa, Akio</creator><creator>Sakazawa, Shigeyuki</creator><creator>Koike, Atsushi</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100701</creationdate><title>Iterative colour correction of multicamera systems using corresponding feature points</title><author>Panahpour Tehrani, Mehrdad ; Ishikawa, Akio ; Sakazawa, Shigeyuki ; Koike, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d280a1487b31833e6c16212e04a2975e2656799166d00c8f1982132293ab93a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Average colour intensities</topic><topic>Cameras</topic><topic>Color</topic><topic>Colour</topic><topic>Colour correction</topic><topic>Corresponding intensities</topic><topic>Density</topic><topic>Dynamic programming</topic><topic>Gaussian kernel density function</topic><topic>Nonlinear weighting</topic><topic>SIFT</topic><topic>Suppressing outliers</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panahpour Tehrani, Mehrdad</creatorcontrib><creatorcontrib>Ishikawa, Akio</creatorcontrib><creatorcontrib>Sakazawa, Shigeyuki</creatorcontrib><creatorcontrib>Koike, Atsushi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of visual communication and image representation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panahpour Tehrani, Mehrdad</au><au>Ishikawa, Akio</au><au>Sakazawa, Shigeyuki</au><au>Koike, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative colour correction of multicamera systems using corresponding feature points</atitle><jtitle>Journal of visual communication and image representation</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>21</volume><issue>5</issue><spage>377</spage><epage>391</epage><pages>377-391</pages><issn>1047-3203</issn><eissn>1095-9076</eissn><abstract>Multiview images captured by multicamera systems are generally not uniform in colour domain. In this paper, we propose a novel colour correction method of multicamera systems that can (i) be applied to not only dense multicamera system, but also sparse multicamera configuration and (ii) obtain an average colour pattern among all cameras. Our proposed colour correction method starts from any camera on the array sequentially, following a certain path, for pairs of cameras, until it reaches the starting point and triggers several iterations. The iteration stops when the correction applied to the images becomes small enough. We propose to calculate the colour correction transformation based on energy minimisation using a dynamic programming of a nonlinearly weighted Gaussian-based kernel density function of geometrically corresponding feature points, obtained by the modified scale invariant feature transformation (SIFT) method, from several time instances and their Gaussian-filtered images. This approach guarantees the convergence of the iteration procedure without any visible colour distortion. The colour correction is done for each colour channel independently. The process is entirely automatic, after estimation of the parameters through the algorithm. Experimental results show that the proposed iteration-based algorithm can colour-correct the dense/sparse multicamera system. The correction is always converged with average colour intensity among viewpoint, and out-performs the conventional method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jvcir.2010.03.007</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-3203
ispartof Journal of visual communication and image representation, 2010-07, Vol.21 (5), p.377-391
issn 1047-3203
1095-9076
language eng
recordid cdi_proquest_miscellaneous_753671036
source Elsevier ScienceDirect Journals
subjects Algorithms
Arrays
Average colour intensities
Cameras
Color
Colour
Colour correction
Corresponding intensities
Density
Dynamic programming
Gaussian kernel density function
Nonlinear weighting
SIFT
Suppressing outliers
Transformations
title Iterative colour correction of multicamera systems using corresponding feature points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20colour%20correction%20of%20multicamera%20systems%20using%20corresponding%20feature%20points&rft.jtitle=Journal%20of%20visual%20communication%20and%20image%20representation&rft.au=Panahpour%20Tehrani,%20Mehrdad&rft.date=2010-07-01&rft.volume=21&rft.issue=5&rft.spage=377&rft.epage=391&rft.pages=377-391&rft.issn=1047-3203&rft.eissn=1095-9076&rft_id=info:doi/10.1016/j.jvcir.2010.03.007&rft_dat=%3Cproquest_cross%3E753671036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753671036&rft_id=info:pmid/&rft_els_id=S1047320310000489&rfr_iscdi=true