Iterative colour correction of multicamera systems using corresponding feature points
Multiview images captured by multicamera systems are generally not uniform in colour domain. In this paper, we propose a novel colour correction method of multicamera systems that can (i) be applied to not only dense multicamera system, but also sparse multicamera configuration and (ii) obtain an av...
Gespeichert in:
Veröffentlicht in: | Journal of visual communication and image representation 2010-07, Vol.21 (5), p.377-391 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 391 |
---|---|
container_issue | 5 |
container_start_page | 377 |
container_title | Journal of visual communication and image representation |
container_volume | 21 |
creator | Panahpour Tehrani, Mehrdad Ishikawa, Akio Sakazawa, Shigeyuki Koike, Atsushi |
description | Multiview images captured by multicamera systems are generally not uniform in colour domain. In this paper, we propose a novel colour correction method of multicamera systems that can (i) be applied to not only dense multicamera system, but also sparse multicamera configuration and (ii) obtain an average colour pattern among all cameras. Our proposed colour correction method starts from any camera on the array sequentially, following a certain path, for pairs of cameras, until it reaches the starting point and triggers several iterations. The iteration stops when the correction applied to the images becomes small enough. We propose to calculate the colour correction transformation based on energy minimisation using a dynamic programming of a nonlinearly weighted Gaussian-based kernel density function of geometrically corresponding feature points, obtained by the modified scale invariant feature transformation (SIFT) method, from several time instances and their Gaussian-filtered images. This approach guarantees the convergence of the iteration procedure without any visible colour distortion. The colour correction is done for each colour channel independently. The process is entirely automatic, after estimation of the parameters through the algorithm. Experimental results show that the proposed iteration-based algorithm can colour-correct the dense/sparse multicamera system. The correction is always converged with average colour intensity among viewpoint, and out-performs the conventional method. |
doi_str_mv | 10.1016/j.jvcir.2010.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753671036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047320310000489</els_id><sourcerecordid>753671036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d280a1487b31833e6c16212e04a2975e2656799166d00c8f1982132293ab93a43</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSsEEmPwCbj0xqnDidu0PXBAE38mTeLCzlGWuihV25QknbRvT0s5c7Cebb1nyb8oumewYcDEY7NpTtq4DYdpA7gByC-iFYMyS0rIxeXcp3mCHPA6uvG-AQAsMV1Fh10gp4I5Uaxta0c3iXOkg7F9bOu4G9tgtOomU-zPPlDn49Gb_mvx-cH21TzVpMLoKB6s6YO_ja5q1Xq6-9N1dHh9-dy-J_uPt932eZ9oxCwkFS9AsbTIj8gKRBKaCc44Qap4mWfERSbysmRCVAC6qFlZcIacl6iOU6W4jh6Wu4Oz3yP5IDvjNbWt6smOXuYZipwBismJi1M7672jWg7OdMqdJQM5M5SN_GUoZ4YSUE4Mp9TTkqLpiZMhJ7021GuqzMxIVtb8m_8Bsml7pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753671036</pqid></control><display><type>article</type><title>Iterative colour correction of multicamera systems using corresponding feature points</title><source>Elsevier ScienceDirect Journals</source><creator>Panahpour Tehrani, Mehrdad ; Ishikawa, Akio ; Sakazawa, Shigeyuki ; Koike, Atsushi</creator><creatorcontrib>Panahpour Tehrani, Mehrdad ; Ishikawa, Akio ; Sakazawa, Shigeyuki ; Koike, Atsushi</creatorcontrib><description>Multiview images captured by multicamera systems are generally not uniform in colour domain. In this paper, we propose a novel colour correction method of multicamera systems that can (i) be applied to not only dense multicamera system, but also sparse multicamera configuration and (ii) obtain an average colour pattern among all cameras. Our proposed colour correction method starts from any camera on the array sequentially, following a certain path, for pairs of cameras, until it reaches the starting point and triggers several iterations. The iteration stops when the correction applied to the images becomes small enough. We propose to calculate the colour correction transformation based on energy minimisation using a dynamic programming of a nonlinearly weighted Gaussian-based kernel density function of geometrically corresponding feature points, obtained by the modified scale invariant feature transformation (SIFT) method, from several time instances and their Gaussian-filtered images. This approach guarantees the convergence of the iteration procedure without any visible colour distortion. The colour correction is done for each colour channel independently. The process is entirely automatic, after estimation of the parameters through the algorithm. Experimental results show that the proposed iteration-based algorithm can colour-correct the dense/sparse multicamera system. The correction is always converged with average colour intensity among viewpoint, and out-performs the conventional method.</description><identifier>ISSN: 1047-3203</identifier><identifier>EISSN: 1095-9076</identifier><identifier>DOI: 10.1016/j.jvcir.2010.03.007</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Arrays ; Average colour intensities ; Cameras ; Color ; Colour ; Colour correction ; Corresponding intensities ; Density ; Dynamic programming ; Gaussian kernel density function ; Nonlinear weighting ; SIFT ; Suppressing outliers ; Transformations</subject><ispartof>Journal of visual communication and image representation, 2010-07, Vol.21 (5), p.377-391</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d280a1487b31833e6c16212e04a2975e2656799166d00c8f1982132293ab93a43</citedby><cites>FETCH-LOGICAL-c335t-d280a1487b31833e6c16212e04a2975e2656799166d00c8f1982132293ab93a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047320310000489$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Panahpour Tehrani, Mehrdad</creatorcontrib><creatorcontrib>Ishikawa, Akio</creatorcontrib><creatorcontrib>Sakazawa, Shigeyuki</creatorcontrib><creatorcontrib>Koike, Atsushi</creatorcontrib><title>Iterative colour correction of multicamera systems using corresponding feature points</title><title>Journal of visual communication and image representation</title><description>Multiview images captured by multicamera systems are generally not uniform in colour domain. In this paper, we propose a novel colour correction method of multicamera systems that can (i) be applied to not only dense multicamera system, but also sparse multicamera configuration and (ii) obtain an average colour pattern among all cameras. Our proposed colour correction method starts from any camera on the array sequentially, following a certain path, for pairs of cameras, until it reaches the starting point and triggers several iterations. The iteration stops when the correction applied to the images becomes small enough. We propose to calculate the colour correction transformation based on energy minimisation using a dynamic programming of a nonlinearly weighted Gaussian-based kernel density function of geometrically corresponding feature points, obtained by the modified scale invariant feature transformation (SIFT) method, from several time instances and their Gaussian-filtered images. This approach guarantees the convergence of the iteration procedure without any visible colour distortion. The colour correction is done for each colour channel independently. The process is entirely automatic, after estimation of the parameters through the algorithm. Experimental results show that the proposed iteration-based algorithm can colour-correct the dense/sparse multicamera system. The correction is always converged with average colour intensity among viewpoint, and out-performs the conventional method.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Average colour intensities</subject><subject>Cameras</subject><subject>Color</subject><subject>Colour</subject><subject>Colour correction</subject><subject>Corresponding intensities</subject><subject>Density</subject><subject>Dynamic programming</subject><subject>Gaussian kernel density function</subject><subject>Nonlinear weighting</subject><subject>SIFT</subject><subject>Suppressing outliers</subject><subject>Transformations</subject><issn>1047-3203</issn><issn>1095-9076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSsEEmPwCbj0xqnDidu0PXBAE38mTeLCzlGWuihV25QknbRvT0s5c7Cebb1nyb8oumewYcDEY7NpTtq4DYdpA7gByC-iFYMyS0rIxeXcp3mCHPA6uvG-AQAsMV1Fh10gp4I5Uaxta0c3iXOkg7F9bOu4G9tgtOomU-zPPlDn49Gb_mvx-cH21TzVpMLoKB6s6YO_ja5q1Xq6-9N1dHh9-dy-J_uPt932eZ9oxCwkFS9AsbTIj8gKRBKaCc44Qap4mWfERSbysmRCVAC6qFlZcIacl6iOU6W4jh6Wu4Oz3yP5IDvjNbWt6smOXuYZipwBismJi1M7672jWg7OdMqdJQM5M5SN_GUoZ4YSUE4Mp9TTkqLpiZMhJ7021GuqzMxIVtb8m_8Bsml7pQ</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Panahpour Tehrani, Mehrdad</creator><creator>Ishikawa, Akio</creator><creator>Sakazawa, Shigeyuki</creator><creator>Koike, Atsushi</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100701</creationdate><title>Iterative colour correction of multicamera systems using corresponding feature points</title><author>Panahpour Tehrani, Mehrdad ; Ishikawa, Akio ; Sakazawa, Shigeyuki ; Koike, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d280a1487b31833e6c16212e04a2975e2656799166d00c8f1982132293ab93a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Average colour intensities</topic><topic>Cameras</topic><topic>Color</topic><topic>Colour</topic><topic>Colour correction</topic><topic>Corresponding intensities</topic><topic>Density</topic><topic>Dynamic programming</topic><topic>Gaussian kernel density function</topic><topic>Nonlinear weighting</topic><topic>SIFT</topic><topic>Suppressing outliers</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panahpour Tehrani, Mehrdad</creatorcontrib><creatorcontrib>Ishikawa, Akio</creatorcontrib><creatorcontrib>Sakazawa, Shigeyuki</creatorcontrib><creatorcontrib>Koike, Atsushi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of visual communication and image representation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panahpour Tehrani, Mehrdad</au><au>Ishikawa, Akio</au><au>Sakazawa, Shigeyuki</au><au>Koike, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative colour correction of multicamera systems using corresponding feature points</atitle><jtitle>Journal of visual communication and image representation</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>21</volume><issue>5</issue><spage>377</spage><epage>391</epage><pages>377-391</pages><issn>1047-3203</issn><eissn>1095-9076</eissn><abstract>Multiview images captured by multicamera systems are generally not uniform in colour domain. In this paper, we propose a novel colour correction method of multicamera systems that can (i) be applied to not only dense multicamera system, but also sparse multicamera configuration and (ii) obtain an average colour pattern among all cameras. Our proposed colour correction method starts from any camera on the array sequentially, following a certain path, for pairs of cameras, until it reaches the starting point and triggers several iterations. The iteration stops when the correction applied to the images becomes small enough. We propose to calculate the colour correction transformation based on energy minimisation using a dynamic programming of a nonlinearly weighted Gaussian-based kernel density function of geometrically corresponding feature points, obtained by the modified scale invariant feature transformation (SIFT) method, from several time instances and their Gaussian-filtered images. This approach guarantees the convergence of the iteration procedure without any visible colour distortion. The colour correction is done for each colour channel independently. The process is entirely automatic, after estimation of the parameters through the algorithm. Experimental results show that the proposed iteration-based algorithm can colour-correct the dense/sparse multicamera system. The correction is always converged with average colour intensity among viewpoint, and out-performs the conventional method.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jvcir.2010.03.007</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-3203 |
ispartof | Journal of visual communication and image representation, 2010-07, Vol.21 (5), p.377-391 |
issn | 1047-3203 1095-9076 |
language | eng |
recordid | cdi_proquest_miscellaneous_753671036 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Arrays Average colour intensities Cameras Color Colour Colour correction Corresponding intensities Density Dynamic programming Gaussian kernel density function Nonlinear weighting SIFT Suppressing outliers Transformations |
title | Iterative colour correction of multicamera systems using corresponding feature points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20colour%20correction%20of%20multicamera%20systems%20using%20corresponding%20feature%20points&rft.jtitle=Journal%20of%20visual%20communication%20and%20image%20representation&rft.au=Panahpour%20Tehrani,%20Mehrdad&rft.date=2010-07-01&rft.volume=21&rft.issue=5&rft.spage=377&rft.epage=391&rft.pages=377-391&rft.issn=1047-3203&rft.eissn=1095-9076&rft_id=info:doi/10.1016/j.jvcir.2010.03.007&rft_dat=%3Cproquest_cross%3E753671036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753671036&rft_id=info:pmid/&rft_els_id=S1047320310000489&rfr_iscdi=true |