Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes
We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1 μm thin platinum–aluminum bi-layers annealed at 300 °C, the novel cathodes show excellent resistance ag...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2010-10, Vol.195 (19), p.6524-6531 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6531 |
---|---|
container_issue | 19 |
container_start_page | 6524 |
container_title | Journal of power sources |
container_volume | 195 |
creator | Kerzenmacher, S. Kräling, U. Schroeder, M. Brämer, R. Zengerle, R. von Stetten, F. |
description | We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1
μm thin platinum–aluminum bi-layers annealed at 300
°C, the novel cathodes show excellent resistance against hydrolytic and oxidative attack. This renders them superior over previous cathodes fabricated from hydrogel-bound catalyst particles. Annealing times of 60, 120, and 240
min result in approximately 400–550
nm thin porous films (roughness factors ∼100–150), which contain platinum and aluminum in a ratio of ∼9:1. Aluminum release during electrode operation can be expected to have no significant effect on physiological normal levels, which promises good biocompatibility. Annealing time has a distinct influence on the density of trenches formed in the cathode. Higher trench densities lead to lower electrode potentials in the presence of glucose. This suggests that glucose sensitivity is governed by mixed potential formation resulting from oxygen depletion within the trenches. During performance characterization the diffusion resistance to be expected from tissue capsule formation upon electrode implantation was taken into account by placing a membrane in front of the cathode. Despite the resulting limited oxygen supply, cathodes prepared by annealing for 60
min show more positive electrode potentials than previous cathodes fabricated from hydrogel-bound activated carbon. Compared to operation in phosphate buffered saline containing 3.0
mM glucose, a potential loss of approximately 120
mV occurs in artificial tissue fluid. This can be reduced to approximately 90
mV with a protective Nafion layer that is easily electro-coated onto the Raney-platinum film. |
doi_str_mv | 10.1016/j.jpowsour.2010.04.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753670206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310006841</els_id><sourcerecordid>1777103322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-26238c3db80ca03cebbe6d4e321223913e9f2d0d1248ccb4378811b98b8c8c6a3</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYMoOI5-BcmL6EvH_Ok0qU_KorvCwi6LPof09nbNkDY1SVfn0W--KbP66MKFQHJOfsk5hLzmbMcZb94fdoc5_EphiTvByiary7RPyIZrJSuh9vunZMOk0pVSe_mcvEjpwBjjXLEN-XNjJzxWs7fZTctIB-dHih4hx9BjokOIdA4Zp-ys90fqxiKdsu080lu_QEhIhwU9BfQ-7ei1jZmKD_T8dFbl4DEWAw2_j7c40Yj9AtmFiYLNP1bES_JssD7hq4d1S75_-fzt7KK6vDr_evbpsoK61rkSjZAaZN9pBpZJwK7Dpq9RCi6EbLnEdhA967moNUBXl_9qzrtWdxo0NFZuydvTvXMMPxdM2Ywura8uAYQlmZJNo5hgTVG--6-SK6U4k7Jwt6Q5SSGGlCIOZo5utPFoODNrO-Zg_rZj1nYMq8u0xfjmgWETWD-UjMClf24hWiEVXwEfTzos0dw5jCaBwwmwd7GUZPrgHkPdA81qq9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777103322</pqid></control><display><type>article</type><title>Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kerzenmacher, S. ; Kräling, U. ; Schroeder, M. ; Brämer, R. ; Zengerle, R. ; von Stetten, F.</creator><creatorcontrib>Kerzenmacher, S. ; Kräling, U. ; Schroeder, M. ; Brämer, R. ; Zengerle, R. ; von Stetten, F.</creatorcontrib><description>We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1
μm thin platinum–aluminum bi-layers annealed at 300
°C, the novel cathodes show excellent resistance against hydrolytic and oxidative attack. This renders them superior over previous cathodes fabricated from hydrogel-bound catalyst particles. Annealing times of 60, 120, and 240
min result in approximately 400–550
nm thin porous films (roughness factors ∼100–150), which contain platinum and aluminum in a ratio of ∼9:1. Aluminum release during electrode operation can be expected to have no significant effect on physiological normal levels, which promises good biocompatibility. Annealing time has a distinct influence on the density of trenches formed in the cathode. Higher trench densities lead to lower electrode potentials in the presence of glucose. This suggests that glucose sensitivity is governed by mixed potential formation resulting from oxygen depletion within the trenches. During performance characterization the diffusion resistance to be expected from tissue capsule formation upon electrode implantation was taken into account by placing a membrane in front of the cathode. Despite the resulting limited oxygen supply, cathodes prepared by annealing for 60
min show more positive electrode potentials than previous cathodes fabricated from hydrogel-bound activated carbon. Compared to operation in phosphate buffered saline containing 3.0
mM glucose, a potential loss of approximately 120
mV occurs in artificial tissue fluid. This can be reduced to approximately 90
mV with a protective Nafion layer that is easily electro-coated onto the Raney-platinum film.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.04.049</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum ; Annealing ; Applied sciences ; Artificial tissue fluid ; Cathodes ; Density ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Glucose ; Glucose fuel cell ; Implantable ; Platinum ; Raney ; Reduction ; Trenches</subject><ispartof>Journal of power sources, 2010-10, Vol.195 (19), p.6524-6531</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-26238c3db80ca03cebbe6d4e321223913e9f2d0d1248ccb4378811b98b8c8c6a3</citedby><cites>FETCH-LOGICAL-c448t-26238c3db80ca03cebbe6d4e321223913e9f2d0d1248ccb4378811b98b8c8c6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2010.04.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22923712$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kerzenmacher, S.</creatorcontrib><creatorcontrib>Kräling, U.</creatorcontrib><creatorcontrib>Schroeder, M.</creatorcontrib><creatorcontrib>Brämer, R.</creatorcontrib><creatorcontrib>Zengerle, R.</creatorcontrib><creatorcontrib>von Stetten, F.</creatorcontrib><title>Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes</title><title>Journal of power sources</title><description>We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1
μm thin platinum–aluminum bi-layers annealed at 300
°C, the novel cathodes show excellent resistance against hydrolytic and oxidative attack. This renders them superior over previous cathodes fabricated from hydrogel-bound catalyst particles. Annealing times of 60, 120, and 240
min result in approximately 400–550
nm thin porous films (roughness factors ∼100–150), which contain platinum and aluminum in a ratio of ∼9:1. Aluminum release during electrode operation can be expected to have no significant effect on physiological normal levels, which promises good biocompatibility. Annealing time has a distinct influence on the density of trenches formed in the cathode. Higher trench densities lead to lower electrode potentials in the presence of glucose. This suggests that glucose sensitivity is governed by mixed potential formation resulting from oxygen depletion within the trenches. During performance characterization the diffusion resistance to be expected from tissue capsule formation upon electrode implantation was taken into account by placing a membrane in front of the cathode. Despite the resulting limited oxygen supply, cathodes prepared by annealing for 60
min show more positive electrode potentials than previous cathodes fabricated from hydrogel-bound activated carbon. Compared to operation in phosphate buffered saline containing 3.0
mM glucose, a potential loss of approximately 120
mV occurs in artificial tissue fluid. This can be reduced to approximately 90
mV with a protective Nafion layer that is easily electro-coated onto the Raney-platinum film.</description><subject>Aluminum</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Artificial tissue fluid</subject><subject>Cathodes</subject><subject>Density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Glucose</subject><subject>Glucose fuel cell</subject><subject>Implantable</subject><subject>Platinum</subject><subject>Raney</subject><subject>Reduction</subject><subject>Trenches</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkV-L1DAUxYMoOI5-BcmL6EvH_Ok0qU_KorvCwi6LPof09nbNkDY1SVfn0W--KbP66MKFQHJOfsk5hLzmbMcZb94fdoc5_EphiTvByiary7RPyIZrJSuh9vunZMOk0pVSe_mcvEjpwBjjXLEN-XNjJzxWs7fZTctIB-dHih4hx9BjokOIdA4Zp-ys90fqxiKdsu080lu_QEhIhwU9BfQ-7ei1jZmKD_T8dFbl4DEWAw2_j7c40Yj9AtmFiYLNP1bES_JssD7hq4d1S75_-fzt7KK6vDr_evbpsoK61rkSjZAaZN9pBpZJwK7Dpq9RCi6EbLnEdhA967moNUBXl_9qzrtWdxo0NFZuydvTvXMMPxdM2Ywura8uAYQlmZJNo5hgTVG--6-SK6U4k7Jwt6Q5SSGGlCIOZo5utPFoODNrO-Zg_rZj1nYMq8u0xfjmgWETWD-UjMClf24hWiEVXwEfTzos0dw5jCaBwwmwd7GUZPrgHkPdA81qq9o</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Kerzenmacher, S.</creator><creator>Kräling, U.</creator><creator>Schroeder, M.</creator><creator>Brämer, R.</creator><creator>Zengerle, R.</creator><creator>von Stetten, F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20101001</creationdate><title>Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes</title><author>Kerzenmacher, S. ; Kräling, U. ; Schroeder, M. ; Brämer, R. ; Zengerle, R. ; von Stetten, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-26238c3db80ca03cebbe6d4e321223913e9f2d0d1248ccb4378811b98b8c8c6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aluminum</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Artificial tissue fluid</topic><topic>Cathodes</topic><topic>Density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Glucose</topic><topic>Glucose fuel cell</topic><topic>Implantable</topic><topic>Platinum</topic><topic>Raney</topic><topic>Reduction</topic><topic>Trenches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerzenmacher, S.</creatorcontrib><creatorcontrib>Kräling, U.</creatorcontrib><creatorcontrib>Schroeder, M.</creatorcontrib><creatorcontrib>Brämer, R.</creatorcontrib><creatorcontrib>Zengerle, R.</creatorcontrib><creatorcontrib>von Stetten, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerzenmacher, S.</au><au>Kräling, U.</au><au>Schroeder, M.</au><au>Brämer, R.</au><au>Zengerle, R.</au><au>von Stetten, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes</atitle><jtitle>Journal of power sources</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>195</volume><issue>19</issue><spage>6524</spage><epage>6531</epage><pages>6524-6531</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1
μm thin platinum–aluminum bi-layers annealed at 300
°C, the novel cathodes show excellent resistance against hydrolytic and oxidative attack. This renders them superior over previous cathodes fabricated from hydrogel-bound catalyst particles. Annealing times of 60, 120, and 240
min result in approximately 400–550
nm thin porous films (roughness factors ∼100–150), which contain platinum and aluminum in a ratio of ∼9:1. Aluminum release during electrode operation can be expected to have no significant effect on physiological normal levels, which promises good biocompatibility. Annealing time has a distinct influence on the density of trenches formed in the cathode. Higher trench densities lead to lower electrode potentials in the presence of glucose. This suggests that glucose sensitivity is governed by mixed potential formation resulting from oxygen depletion within the trenches. During performance characterization the diffusion resistance to be expected from tissue capsule formation upon electrode implantation was taken into account by placing a membrane in front of the cathode. Despite the resulting limited oxygen supply, cathodes prepared by annealing for 60
min show more positive electrode potentials than previous cathodes fabricated from hydrogel-bound activated carbon. Compared to operation in phosphate buffered saline containing 3.0
mM glucose, a potential loss of approximately 120
mV occurs in artificial tissue fluid. This can be reduced to approximately 90
mV with a protective Nafion layer that is easily electro-coated onto the Raney-platinum film.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.04.049</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2010-10, Vol.195 (19), p.6524-6531 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_753670206 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminum Annealing Applied sciences Artificial tissue fluid Cathodes Density Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrodes Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Glucose Glucose fuel cell Implantable Platinum Raney Reduction Trenches |
title | Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raney-platinum%20film%20electrodes%20for%20potentially%20implantable%20glucose%20fuel%20cells.%20Part%202:%20Glucose-tolerant%20oxygen%20reduction%20cathodes&rft.jtitle=Journal%20of%20power%20sources&rft.au=Kerzenmacher,%20S.&rft.date=2010-10-01&rft.volume=195&rft.issue=19&rft.spage=6524&rft.epage=6531&rft.pages=6524-6531&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.04.049&rft_dat=%3Cproquest_cross%3E1777103322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777103322&rft_id=info:pmid/&rft_els_id=S0378775310006841&rfr_iscdi=true |