Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes

We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1 μm thin platinum–aluminum bi-layers annealed at 300 °C, the novel cathodes show excellent resistance ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2010-10, Vol.195 (19), p.6524-6531
Hauptverfasser: Kerzenmacher, S., Kräling, U., Schroeder, M., Brämer, R., Zengerle, R., von Stetten, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6531
container_issue 19
container_start_page 6524
container_title Journal of power sources
container_volume 195
creator Kerzenmacher, S.
Kräling, U.
Schroeder, M.
Brämer, R.
Zengerle, R.
von Stetten, F.
description We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1 μm thin platinum–aluminum bi-layers annealed at 300 °C, the novel cathodes show excellent resistance against hydrolytic and oxidative attack. This renders them superior over previous cathodes fabricated from hydrogel-bound catalyst particles. Annealing times of 60, 120, and 240 min result in approximately 400–550 nm thin porous films (roughness factors ∼100–150), which contain platinum and aluminum in a ratio of ∼9:1. Aluminum release during electrode operation can be expected to have no significant effect on physiological normal levels, which promises good biocompatibility. Annealing time has a distinct influence on the density of trenches formed in the cathode. Higher trench densities lead to lower electrode potentials in the presence of glucose. This suggests that glucose sensitivity is governed by mixed potential formation resulting from oxygen depletion within the trenches. During performance characterization the diffusion resistance to be expected from tissue capsule formation upon electrode implantation was taken into account by placing a membrane in front of the cathode. Despite the resulting limited oxygen supply, cathodes prepared by annealing for 60 min show more positive electrode potentials than previous cathodes fabricated from hydrogel-bound activated carbon. Compared to operation in phosphate buffered saline containing 3.0 mM glucose, a potential loss of approximately 120 mV occurs in artificial tissue fluid. This can be reduced to approximately 90 mV with a protective Nafion layer that is easily electro-coated onto the Raney-platinum film.
doi_str_mv 10.1016/j.jpowsour.2010.04.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753670206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310006841</els_id><sourcerecordid>1777103322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-26238c3db80ca03cebbe6d4e321223913e9f2d0d1248ccb4378811b98b8c8c6a3</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYMoOI5-BcmL6EvH_Ok0qU_KorvCwi6LPof09nbNkDY1SVfn0W--KbP66MKFQHJOfsk5hLzmbMcZb94fdoc5_EphiTvByiary7RPyIZrJSuh9vunZMOk0pVSe_mcvEjpwBjjXLEN-XNjJzxWs7fZTctIB-dHih4hx9BjokOIdA4Zp-ys90fqxiKdsu080lu_QEhIhwU9BfQ-7ei1jZmKD_T8dFbl4DEWAw2_j7c40Yj9AtmFiYLNP1bES_JssD7hq4d1S75_-fzt7KK6vDr_evbpsoK61rkSjZAaZN9pBpZJwK7Dpq9RCi6EbLnEdhA967moNUBXl_9qzrtWdxo0NFZuydvTvXMMPxdM2Ywura8uAYQlmZJNo5hgTVG--6-SK6U4k7Jwt6Q5SSGGlCIOZo5utPFoODNrO-Zg_rZj1nYMq8u0xfjmgWETWD-UjMClf24hWiEVXwEfTzos0dw5jCaBwwmwd7GUZPrgHkPdA81qq9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777103322</pqid></control><display><type>article</type><title>Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kerzenmacher, S. ; Kräling, U. ; Schroeder, M. ; Brämer, R. ; Zengerle, R. ; von Stetten, F.</creator><creatorcontrib>Kerzenmacher, S. ; Kräling, U. ; Schroeder, M. ; Brämer, R. ; Zengerle, R. ; von Stetten, F.</creatorcontrib><description>We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1 μm thin platinum–aluminum bi-layers annealed at 300 °C, the novel cathodes show excellent resistance against hydrolytic and oxidative attack. This renders them superior over previous cathodes fabricated from hydrogel-bound catalyst particles. Annealing times of 60, 120, and 240 min result in approximately 400–550 nm thin porous films (roughness factors ∼100–150), which contain platinum and aluminum in a ratio of ∼9:1. Aluminum release during electrode operation can be expected to have no significant effect on physiological normal levels, which promises good biocompatibility. Annealing time has a distinct influence on the density of trenches formed in the cathode. Higher trench densities lead to lower electrode potentials in the presence of glucose. This suggests that glucose sensitivity is governed by mixed potential formation resulting from oxygen depletion within the trenches. During performance characterization the diffusion resistance to be expected from tissue capsule formation upon electrode implantation was taken into account by placing a membrane in front of the cathode. Despite the resulting limited oxygen supply, cathodes prepared by annealing for 60 min show more positive electrode potentials than previous cathodes fabricated from hydrogel-bound activated carbon. Compared to operation in phosphate buffered saline containing 3.0 mM glucose, a potential loss of approximately 120 mV occurs in artificial tissue fluid. This can be reduced to approximately 90 mV with a protective Nafion layer that is easily electro-coated onto the Raney-platinum film.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.04.049</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum ; Annealing ; Applied sciences ; Artificial tissue fluid ; Cathodes ; Density ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Glucose ; Glucose fuel cell ; Implantable ; Platinum ; Raney ; Reduction ; Trenches</subject><ispartof>Journal of power sources, 2010-10, Vol.195 (19), p.6524-6531</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-26238c3db80ca03cebbe6d4e321223913e9f2d0d1248ccb4378811b98b8c8c6a3</citedby><cites>FETCH-LOGICAL-c448t-26238c3db80ca03cebbe6d4e321223913e9f2d0d1248ccb4378811b98b8c8c6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2010.04.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22923712$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kerzenmacher, S.</creatorcontrib><creatorcontrib>Kräling, U.</creatorcontrib><creatorcontrib>Schroeder, M.</creatorcontrib><creatorcontrib>Brämer, R.</creatorcontrib><creatorcontrib>Zengerle, R.</creatorcontrib><creatorcontrib>von Stetten, F.</creatorcontrib><title>Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes</title><title>Journal of power sources</title><description>We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1 μm thin platinum–aluminum bi-layers annealed at 300 °C, the novel cathodes show excellent resistance against hydrolytic and oxidative attack. This renders them superior over previous cathodes fabricated from hydrogel-bound catalyst particles. Annealing times of 60, 120, and 240 min result in approximately 400–550 nm thin porous films (roughness factors ∼100–150), which contain platinum and aluminum in a ratio of ∼9:1. Aluminum release during electrode operation can be expected to have no significant effect on physiological normal levels, which promises good biocompatibility. Annealing time has a distinct influence on the density of trenches formed in the cathode. Higher trench densities lead to lower electrode potentials in the presence of glucose. This suggests that glucose sensitivity is governed by mixed potential formation resulting from oxygen depletion within the trenches. During performance characterization the diffusion resistance to be expected from tissue capsule formation upon electrode implantation was taken into account by placing a membrane in front of the cathode. Despite the resulting limited oxygen supply, cathodes prepared by annealing for 60 min show more positive electrode potentials than previous cathodes fabricated from hydrogel-bound activated carbon. Compared to operation in phosphate buffered saline containing 3.0 mM glucose, a potential loss of approximately 120 mV occurs in artificial tissue fluid. This can be reduced to approximately 90 mV with a protective Nafion layer that is easily electro-coated onto the Raney-platinum film.</description><subject>Aluminum</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Artificial tissue fluid</subject><subject>Cathodes</subject><subject>Density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Glucose</subject><subject>Glucose fuel cell</subject><subject>Implantable</subject><subject>Platinum</subject><subject>Raney</subject><subject>Reduction</subject><subject>Trenches</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkV-L1DAUxYMoOI5-BcmL6EvH_Ok0qU_KorvCwi6LPof09nbNkDY1SVfn0W--KbP66MKFQHJOfsk5hLzmbMcZb94fdoc5_EphiTvByiary7RPyIZrJSuh9vunZMOk0pVSe_mcvEjpwBjjXLEN-XNjJzxWs7fZTctIB-dHih4hx9BjokOIdA4Zp-ys90fqxiKdsu080lu_QEhIhwU9BfQ-7ei1jZmKD_T8dFbl4DEWAw2_j7c40Yj9AtmFiYLNP1bES_JssD7hq4d1S75_-fzt7KK6vDr_evbpsoK61rkSjZAaZN9pBpZJwK7Dpq9RCi6EbLnEdhA967moNUBXl_9qzrtWdxo0NFZuydvTvXMMPxdM2Ywura8uAYQlmZJNo5hgTVG--6-SK6U4k7Jwt6Q5SSGGlCIOZo5utPFoODNrO-Zg_rZj1nYMq8u0xfjmgWETWD-UjMClf24hWiEVXwEfTzos0dw5jCaBwwmwd7GUZPrgHkPdA81qq9o</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Kerzenmacher, S.</creator><creator>Kräling, U.</creator><creator>Schroeder, M.</creator><creator>Brämer, R.</creator><creator>Zengerle, R.</creator><creator>von Stetten, F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20101001</creationdate><title>Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes</title><author>Kerzenmacher, S. ; Kräling, U. ; Schroeder, M. ; Brämer, R. ; Zengerle, R. ; von Stetten, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-26238c3db80ca03cebbe6d4e321223913e9f2d0d1248ccb4378811b98b8c8c6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aluminum</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Artificial tissue fluid</topic><topic>Cathodes</topic><topic>Density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Glucose</topic><topic>Glucose fuel cell</topic><topic>Implantable</topic><topic>Platinum</topic><topic>Raney</topic><topic>Reduction</topic><topic>Trenches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerzenmacher, S.</creatorcontrib><creatorcontrib>Kräling, U.</creatorcontrib><creatorcontrib>Schroeder, M.</creatorcontrib><creatorcontrib>Brämer, R.</creatorcontrib><creatorcontrib>Zengerle, R.</creatorcontrib><creatorcontrib>von Stetten, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerzenmacher, S.</au><au>Kräling, U.</au><au>Schroeder, M.</au><au>Brämer, R.</au><au>Zengerle, R.</au><au>von Stetten, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes</atitle><jtitle>Journal of power sources</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>195</volume><issue>19</issue><spage>6524</spage><epage>6531</epage><pages>6524-6531</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1 μm thin platinum–aluminum bi-layers annealed at 300 °C, the novel cathodes show excellent resistance against hydrolytic and oxidative attack. This renders them superior over previous cathodes fabricated from hydrogel-bound catalyst particles. Annealing times of 60, 120, and 240 min result in approximately 400–550 nm thin porous films (roughness factors ∼100–150), which contain platinum and aluminum in a ratio of ∼9:1. Aluminum release during electrode operation can be expected to have no significant effect on physiological normal levels, which promises good biocompatibility. Annealing time has a distinct influence on the density of trenches formed in the cathode. Higher trench densities lead to lower electrode potentials in the presence of glucose. This suggests that glucose sensitivity is governed by mixed potential formation resulting from oxygen depletion within the trenches. During performance characterization the diffusion resistance to be expected from tissue capsule formation upon electrode implantation was taken into account by placing a membrane in front of the cathode. Despite the resulting limited oxygen supply, cathodes prepared by annealing for 60 min show more positive electrode potentials than previous cathodes fabricated from hydrogel-bound activated carbon. Compared to operation in phosphate buffered saline containing 3.0 mM glucose, a potential loss of approximately 120 mV occurs in artificial tissue fluid. This can be reduced to approximately 90 mV with a protective Nafion layer that is easily electro-coated onto the Raney-platinum film.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.04.049</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2010-10, Vol.195 (19), p.6524-6531
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_753670206
source Access via ScienceDirect (Elsevier)
subjects Aluminum
Annealing
Applied sciences
Artificial tissue fluid
Cathodes
Density
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrodes
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Glucose
Glucose fuel cell
Implantable
Platinum
Raney
Reduction
Trenches
title Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raney-platinum%20film%20electrodes%20for%20potentially%20implantable%20glucose%20fuel%20cells.%20Part%202:%20Glucose-tolerant%20oxygen%20reduction%20cathodes&rft.jtitle=Journal%20of%20power%20sources&rft.au=Kerzenmacher,%20S.&rft.date=2010-10-01&rft.volume=195&rft.issue=19&rft.spage=6524&rft.epage=6531&rft.pages=6524-6531&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.04.049&rft_dat=%3Cproquest_cross%3E1777103322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777103322&rft_id=info:pmid/&rft_els_id=S0378775310006841&rfr_iscdi=true