Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction

X-ray crystal truncation rod (CTR) diffraction under hydrated conditions at circum-neutral pH was used to determine the surface structure of Fe 3O 4(111) following a wet chemical mechanical polishing (CMP) preparation method. The best-fit model to the CTR data shows the presence of two oxygen termin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2010-07, Vol.604 (13), p.1082-1093
Hauptverfasser: Petitto, Sarah C., Tanwar, Kunaljeet S., Ghose, Sanjit K., Eng, Peter J., Trainor, Thomas P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1093
container_issue 13
container_start_page 1082
container_title Surface science
container_volume 604
creator Petitto, Sarah C.
Tanwar, Kunaljeet S.
Ghose, Sanjit K.
Eng, Peter J.
Trainor, Thomas P.
description X-ray crystal truncation rod (CTR) diffraction under hydrated conditions at circum-neutral pH was used to determine the surface structure of Fe 3O 4(111) following a wet chemical mechanical polishing (CMP) preparation method. The best-fit model to the CTR data shows the presence of two oxygen terminated domains that are chemically inequivalent and symmetrically distinct in the surface contribution ratio of 75% oxygen octahedral-iron (OOI) termination ( aO 2.61– aO 1.00– oh1Fe 2.55– bO 1.00– bO 3.00– td1Fe 1.00– oh2Fe 1.00– td2Fe 1.00–R) to 25% oxygen mixed-iron (OMI) termination ( bO 1.00– bO 3.00– td1Fe 0– oh2Fe 1.00– td2Fe 1.00– aO 3.00– aO 1.00– oh1Fe 3.00–R). An adsorbed water layer could not be constrained in the best-fit model. However, bond-valence analyses suggest that both of the surfaces are hydro-oxo terminated. Furthermore, the topmost iron layers of both domains are inferred to be occupied with the redox active Fe 2+ and Fe 3+ cations indicating that these irons are the principle irons involved in controlling the surface reactivity of magnetite in industrial and environmentally relevant conditions.
doi_str_mv 10.1016/j.susc.2010.03.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753669689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003960281000110X</els_id><sourcerecordid>753669689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e78f31b1878b837128dfbf5bddd4c22d03ad6d0a7f930d81fc7b2c23c75853e13</originalsourceid><addsrcrecordid>eNp9UE1r3DAQFaWBbjf9Az3pEtoevNHH2pahlxKaDwjkkOQs5JlRo8Vrp5Ic2H9fmV1y7FyGebx5M-8x9lWKjRSyudxt0pxgo0QBhN4Iuf3AVtK0XaXa2nxkKyF0VzVCmU_sc0o7UWrb1SuGj3P0DoinHGfIcyQ-eb53f0bKIRP_LqX8wecRKfKXA0aXCTlMI4YcpjHx_sAhHlJ2Ay8CI7gF5nFCjsH76GCZz9mZd0OiL6e-Zs_Xv5-ubqv7h5u7q1_3FehG5Ypa47Xsy9umN7qVyqDvfd0j4haUQqEdNihc6zst0EgPba9AaSgWa01Sr9m3o-5rnP7OlLLdhwQ0DG6kaU62rXXTdI3pClMdmRCnlCJ5-xrD3sWDlcIuidqdXRK1S6JWaFsSLUsXJ3mXwA3F3QghvW8q1cmuLZ-s2c8jj4rXt0DRJgg0AmGIBNniFP535h-5so3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753669689</pqid></control><display><type>article</type><title>Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction</title><source>Elsevier ScienceDirect Journals</source><creator>Petitto, Sarah C. ; Tanwar, Kunaljeet S. ; Ghose, Sanjit K. ; Eng, Peter J. ; Trainor, Thomas P.</creator><creatorcontrib>Petitto, Sarah C. ; Tanwar, Kunaljeet S. ; Ghose, Sanjit K. ; Eng, Peter J. ; Trainor, Thomas P.</creatorcontrib><description>X-ray crystal truncation rod (CTR) diffraction under hydrated conditions at circum-neutral pH was used to determine the surface structure of Fe 3O 4(111) following a wet chemical mechanical polishing (CMP) preparation method. The best-fit model to the CTR data shows the presence of two oxygen terminated domains that are chemically inequivalent and symmetrically distinct in the surface contribution ratio of 75% oxygen octahedral-iron (OOI) termination ( aO 2.61– aO 1.00– oh1Fe 2.55– bO 1.00– bO 3.00– td1Fe 1.00– oh2Fe 1.00– td2Fe 1.00–R) to 25% oxygen mixed-iron (OMI) termination ( bO 1.00– bO 3.00– td1Fe 0– oh2Fe 1.00– td2Fe 1.00– aO 3.00– aO 1.00– oh1Fe 3.00–R). An adsorbed water layer could not be constrained in the best-fit model. However, bond-valence analyses suggest that both of the surfaces are hydro-oxo terminated. Furthermore, the topmost iron layers of both domains are inferred to be occupied with the redox active Fe 2+ and Fe 3+ cations indicating that these irons are the principle irons involved in controlling the surface reactivity of magnetite in industrial and environmentally relevant conditions.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2010.03.014</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Bonding ; Chemical mechanical polished (CMP) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystal structure ; Crystal Truncation Rod (CTR) Diffraction ; Diffraction ; Exact sciences and technology ; Iron ; Magnetite ; Magnetite (Fe 3O4) ; Mechanical polishing ; Physics ; Surface chemistry ; Surface structure</subject><ispartof>Surface science, 2010-07, Vol.604 (13), p.1082-1093</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e78f31b1878b837128dfbf5bddd4c22d03ad6d0a7f930d81fc7b2c23c75853e13</citedby><cites>FETCH-LOGICAL-c362t-e78f31b1878b837128dfbf5bddd4c22d03ad6d0a7f930d81fc7b2c23c75853e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003960281000110X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22919785$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Petitto, Sarah C.</creatorcontrib><creatorcontrib>Tanwar, Kunaljeet S.</creatorcontrib><creatorcontrib>Ghose, Sanjit K.</creatorcontrib><creatorcontrib>Eng, Peter J.</creatorcontrib><creatorcontrib>Trainor, Thomas P.</creatorcontrib><title>Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction</title><title>Surface science</title><description>X-ray crystal truncation rod (CTR) diffraction under hydrated conditions at circum-neutral pH was used to determine the surface structure of Fe 3O 4(111) following a wet chemical mechanical polishing (CMP) preparation method. The best-fit model to the CTR data shows the presence of two oxygen terminated domains that are chemically inequivalent and symmetrically distinct in the surface contribution ratio of 75% oxygen octahedral-iron (OOI) termination ( aO 2.61– aO 1.00– oh1Fe 2.55– bO 1.00– bO 3.00– td1Fe 1.00– oh2Fe 1.00– td2Fe 1.00–R) to 25% oxygen mixed-iron (OMI) termination ( bO 1.00– bO 3.00– td1Fe 0– oh2Fe 1.00– td2Fe 1.00– aO 3.00– aO 1.00– oh1Fe 3.00–R). An adsorbed water layer could not be constrained in the best-fit model. However, bond-valence analyses suggest that both of the surfaces are hydro-oxo terminated. Furthermore, the topmost iron layers of both domains are inferred to be occupied with the redox active Fe 2+ and Fe 3+ cations indicating that these irons are the principle irons involved in controlling the surface reactivity of magnetite in industrial and environmentally relevant conditions.</description><subject>Bonding</subject><subject>Chemical mechanical polished (CMP)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal structure</subject><subject>Crystal Truncation Rod (CTR) Diffraction</subject><subject>Diffraction</subject><subject>Exact sciences and technology</subject><subject>Iron</subject><subject>Magnetite</subject><subject>Magnetite (Fe 3O4)</subject><subject>Mechanical polishing</subject><subject>Physics</subject><subject>Surface chemistry</subject><subject>Surface structure</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1r3DAQFaWBbjf9Az3pEtoevNHH2pahlxKaDwjkkOQs5JlRo8Vrp5Ic2H9fmV1y7FyGebx5M-8x9lWKjRSyudxt0pxgo0QBhN4Iuf3AVtK0XaXa2nxkKyF0VzVCmU_sc0o7UWrb1SuGj3P0DoinHGfIcyQ-eb53f0bKIRP_LqX8wecRKfKXA0aXCTlMI4YcpjHx_sAhHlJ2Ay8CI7gF5nFCjsH76GCZz9mZd0OiL6e-Zs_Xv5-ubqv7h5u7q1_3FehG5Ypa47Xsy9umN7qVyqDvfd0j4haUQqEdNihc6zst0EgPba9AaSgWa01Sr9m3o-5rnP7OlLLdhwQ0DG6kaU62rXXTdI3pClMdmRCnlCJ5-xrD3sWDlcIuidqdXRK1S6JWaFsSLUsXJ3mXwA3F3QghvW8q1cmuLZ-s2c8jj4rXt0DRJgg0AmGIBNniFP535h-5so3A</recordid><startdate>20100715</startdate><enddate>20100715</enddate><creator>Petitto, Sarah C.</creator><creator>Tanwar, Kunaljeet S.</creator><creator>Ghose, Sanjit K.</creator><creator>Eng, Peter J.</creator><creator>Trainor, Thomas P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100715</creationdate><title>Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction</title><author>Petitto, Sarah C. ; Tanwar, Kunaljeet S. ; Ghose, Sanjit K. ; Eng, Peter J. ; Trainor, Thomas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e78f31b1878b837128dfbf5bddd4c22d03ad6d0a7f930d81fc7b2c23c75853e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bonding</topic><topic>Chemical mechanical polished (CMP)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal structure</topic><topic>Crystal Truncation Rod (CTR) Diffraction</topic><topic>Diffraction</topic><topic>Exact sciences and technology</topic><topic>Iron</topic><topic>Magnetite</topic><topic>Magnetite (Fe 3O4)</topic><topic>Mechanical polishing</topic><topic>Physics</topic><topic>Surface chemistry</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petitto, Sarah C.</creatorcontrib><creatorcontrib>Tanwar, Kunaljeet S.</creatorcontrib><creatorcontrib>Ghose, Sanjit K.</creatorcontrib><creatorcontrib>Eng, Peter J.</creatorcontrib><creatorcontrib>Trainor, Thomas P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petitto, Sarah C.</au><au>Tanwar, Kunaljeet S.</au><au>Ghose, Sanjit K.</au><au>Eng, Peter J.</au><au>Trainor, Thomas P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction</atitle><jtitle>Surface science</jtitle><date>2010-07-15</date><risdate>2010</risdate><volume>604</volume><issue>13</issue><spage>1082</spage><epage>1093</epage><pages>1082-1093</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>X-ray crystal truncation rod (CTR) diffraction under hydrated conditions at circum-neutral pH was used to determine the surface structure of Fe 3O 4(111) following a wet chemical mechanical polishing (CMP) preparation method. The best-fit model to the CTR data shows the presence of two oxygen terminated domains that are chemically inequivalent and symmetrically distinct in the surface contribution ratio of 75% oxygen octahedral-iron (OOI) termination ( aO 2.61– aO 1.00– oh1Fe 2.55– bO 1.00– bO 3.00– td1Fe 1.00– oh2Fe 1.00– td2Fe 1.00–R) to 25% oxygen mixed-iron (OMI) termination ( bO 1.00– bO 3.00– td1Fe 0– oh2Fe 1.00– td2Fe 1.00– aO 3.00– aO 1.00– oh1Fe 3.00–R). An adsorbed water layer could not be constrained in the best-fit model. However, bond-valence analyses suggest that both of the surfaces are hydro-oxo terminated. Furthermore, the topmost iron layers of both domains are inferred to be occupied with the redox active Fe 2+ and Fe 3+ cations indicating that these irons are the principle irons involved in controlling the surface reactivity of magnetite in industrial and environmentally relevant conditions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2010.03.014</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2010-07, Vol.604 (13), p.1082-1093
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_753669689
source Elsevier ScienceDirect Journals
subjects Bonding
Chemical mechanical polished (CMP)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystal structure
Crystal Truncation Rod (CTR) Diffraction
Diffraction
Exact sciences and technology
Iron
Magnetite
Magnetite (Fe 3O4)
Mechanical polishing
Physics
Surface chemistry
Surface structure
title Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20structure%20of%20magnetite%20(111)%20under%20hydrated%20conditions%20by%20crystal%20truncation%20rod%20diffraction&rft.jtitle=Surface%20science&rft.au=Petitto,%20Sarah%20C.&rft.date=2010-07-15&rft.volume=604&rft.issue=13&rft.spage=1082&rft.epage=1093&rft.pages=1082-1093&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2010.03.014&rft_dat=%3Cproquest_cross%3E753669689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753669689&rft_id=info:pmid/&rft_els_id=S003960281000110X&rfr_iscdi=true