Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction
X-ray crystal truncation rod (CTR) diffraction under hydrated conditions at circum-neutral pH was used to determine the surface structure of Fe 3O 4(111) following a wet chemical mechanical polishing (CMP) preparation method. The best-fit model to the CTR data shows the presence of two oxygen termin...
Gespeichert in:
Veröffentlicht in: | Surface science 2010-07, Vol.604 (13), p.1082-1093 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1093 |
---|---|
container_issue | 13 |
container_start_page | 1082 |
container_title | Surface science |
container_volume | 604 |
creator | Petitto, Sarah C. Tanwar, Kunaljeet S. Ghose, Sanjit K. Eng, Peter J. Trainor, Thomas P. |
description | X-ray crystal truncation rod (CTR) diffraction under hydrated conditions at circum-neutral pH was used to determine the surface structure of Fe
3O
4(111) following a wet chemical mechanical polishing (CMP) preparation method. The best-fit model to the CTR data shows the presence of two oxygen terminated domains that are chemically inequivalent and symmetrically distinct in the surface contribution ratio of 75% oxygen octahedral-iron (OOI) termination (
aO
2.61–
aO
1.00–
oh1Fe
2.55–
bO
1.00–
bO
3.00–
td1Fe
1.00–
oh2Fe
1.00–
td2Fe
1.00–R) to 25% oxygen mixed-iron (OMI) termination (
bO
1.00–
bO
3.00–
td1Fe
0–
oh2Fe
1.00–
td2Fe
1.00–
aO
3.00–
aO
1.00–
oh1Fe
3.00–R). An adsorbed water layer could not be constrained in the best-fit model. However, bond-valence analyses suggest that both of the surfaces are hydro-oxo terminated. Furthermore, the topmost iron layers of both domains are inferred to be occupied with the redox active Fe
2+ and Fe
3+ cations indicating that these irons are the principle irons involved in controlling the surface reactivity of magnetite in industrial and environmentally relevant conditions. |
doi_str_mv | 10.1016/j.susc.2010.03.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753669689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003960281000110X</els_id><sourcerecordid>753669689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e78f31b1878b837128dfbf5bddd4c22d03ad6d0a7f930d81fc7b2c23c75853e13</originalsourceid><addsrcrecordid>eNp9UE1r3DAQFaWBbjf9Az3pEtoevNHH2pahlxKaDwjkkOQs5JlRo8Vrp5Ic2H9fmV1y7FyGebx5M-8x9lWKjRSyudxt0pxgo0QBhN4Iuf3AVtK0XaXa2nxkKyF0VzVCmU_sc0o7UWrb1SuGj3P0DoinHGfIcyQ-eb53f0bKIRP_LqX8wecRKfKXA0aXCTlMI4YcpjHx_sAhHlJ2Ay8CI7gF5nFCjsH76GCZz9mZd0OiL6e-Zs_Xv5-ubqv7h5u7q1_3FehG5Ypa47Xsy9umN7qVyqDvfd0j4haUQqEdNihc6zst0EgPba9AaSgWa01Sr9m3o-5rnP7OlLLdhwQ0DG6kaU62rXXTdI3pClMdmRCnlCJ5-xrD3sWDlcIuidqdXRK1S6JWaFsSLUsXJ3mXwA3F3QghvW8q1cmuLZ-s2c8jj4rXt0DRJgg0AmGIBNniFP535h-5so3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753669689</pqid></control><display><type>article</type><title>Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction</title><source>Elsevier ScienceDirect Journals</source><creator>Petitto, Sarah C. ; Tanwar, Kunaljeet S. ; Ghose, Sanjit K. ; Eng, Peter J. ; Trainor, Thomas P.</creator><creatorcontrib>Petitto, Sarah C. ; Tanwar, Kunaljeet S. ; Ghose, Sanjit K. ; Eng, Peter J. ; Trainor, Thomas P.</creatorcontrib><description>X-ray crystal truncation rod (CTR) diffraction under hydrated conditions at circum-neutral pH was used to determine the surface structure of Fe
3O
4(111) following a wet chemical mechanical polishing (CMP) preparation method. The best-fit model to the CTR data shows the presence of two oxygen terminated domains that are chemically inequivalent and symmetrically distinct in the surface contribution ratio of 75% oxygen octahedral-iron (OOI) termination (
aO
2.61–
aO
1.00–
oh1Fe
2.55–
bO
1.00–
bO
3.00–
td1Fe
1.00–
oh2Fe
1.00–
td2Fe
1.00–R) to 25% oxygen mixed-iron (OMI) termination (
bO
1.00–
bO
3.00–
td1Fe
0–
oh2Fe
1.00–
td2Fe
1.00–
aO
3.00–
aO
1.00–
oh1Fe
3.00–R). An adsorbed water layer could not be constrained in the best-fit model. However, bond-valence analyses suggest that both of the surfaces are hydro-oxo terminated. Furthermore, the topmost iron layers of both domains are inferred to be occupied with the redox active Fe
2+ and Fe
3+ cations indicating that these irons are the principle irons involved in controlling the surface reactivity of magnetite in industrial and environmentally relevant conditions.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2010.03.014</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Bonding ; Chemical mechanical polished (CMP) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystal structure ; Crystal Truncation Rod (CTR) Diffraction ; Diffraction ; Exact sciences and technology ; Iron ; Magnetite ; Magnetite (Fe 3O4) ; Mechanical polishing ; Physics ; Surface chemistry ; Surface structure</subject><ispartof>Surface science, 2010-07, Vol.604 (13), p.1082-1093</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e78f31b1878b837128dfbf5bddd4c22d03ad6d0a7f930d81fc7b2c23c75853e13</citedby><cites>FETCH-LOGICAL-c362t-e78f31b1878b837128dfbf5bddd4c22d03ad6d0a7f930d81fc7b2c23c75853e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003960281000110X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22919785$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Petitto, Sarah C.</creatorcontrib><creatorcontrib>Tanwar, Kunaljeet S.</creatorcontrib><creatorcontrib>Ghose, Sanjit K.</creatorcontrib><creatorcontrib>Eng, Peter J.</creatorcontrib><creatorcontrib>Trainor, Thomas P.</creatorcontrib><title>Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction</title><title>Surface science</title><description>X-ray crystal truncation rod (CTR) diffraction under hydrated conditions at circum-neutral pH was used to determine the surface structure of Fe
3O
4(111) following a wet chemical mechanical polishing (CMP) preparation method. The best-fit model to the CTR data shows the presence of two oxygen terminated domains that are chemically inequivalent and symmetrically distinct in the surface contribution ratio of 75% oxygen octahedral-iron (OOI) termination (
aO
2.61–
aO
1.00–
oh1Fe
2.55–
bO
1.00–
bO
3.00–
td1Fe
1.00–
oh2Fe
1.00–
td2Fe
1.00–R) to 25% oxygen mixed-iron (OMI) termination (
bO
1.00–
bO
3.00–
td1Fe
0–
oh2Fe
1.00–
td2Fe
1.00–
aO
3.00–
aO
1.00–
oh1Fe
3.00–R). An adsorbed water layer could not be constrained in the best-fit model. However, bond-valence analyses suggest that both of the surfaces are hydro-oxo terminated. Furthermore, the topmost iron layers of both domains are inferred to be occupied with the redox active Fe
2+ and Fe
3+ cations indicating that these irons are the principle irons involved in controlling the surface reactivity of magnetite in industrial and environmentally relevant conditions.</description><subject>Bonding</subject><subject>Chemical mechanical polished (CMP)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal structure</subject><subject>Crystal Truncation Rod (CTR) Diffraction</subject><subject>Diffraction</subject><subject>Exact sciences and technology</subject><subject>Iron</subject><subject>Magnetite</subject><subject>Magnetite (Fe 3O4)</subject><subject>Mechanical polishing</subject><subject>Physics</subject><subject>Surface chemistry</subject><subject>Surface structure</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1r3DAQFaWBbjf9Az3pEtoevNHH2pahlxKaDwjkkOQs5JlRo8Vrp5Ic2H9fmV1y7FyGebx5M-8x9lWKjRSyudxt0pxgo0QBhN4Iuf3AVtK0XaXa2nxkKyF0VzVCmU_sc0o7UWrb1SuGj3P0DoinHGfIcyQ-eb53f0bKIRP_LqX8wecRKfKXA0aXCTlMI4YcpjHx_sAhHlJ2Ay8CI7gF5nFCjsH76GCZz9mZd0OiL6e-Zs_Xv5-ubqv7h5u7q1_3FehG5Ypa47Xsy9umN7qVyqDvfd0j4haUQqEdNihc6zst0EgPba9AaSgWa01Sr9m3o-5rnP7OlLLdhwQ0DG6kaU62rXXTdI3pClMdmRCnlCJ5-xrD3sWDlcIuidqdXRK1S6JWaFsSLUsXJ3mXwA3F3QghvW8q1cmuLZ-s2c8jj4rXt0DRJgg0AmGIBNniFP535h-5so3A</recordid><startdate>20100715</startdate><enddate>20100715</enddate><creator>Petitto, Sarah C.</creator><creator>Tanwar, Kunaljeet S.</creator><creator>Ghose, Sanjit K.</creator><creator>Eng, Peter J.</creator><creator>Trainor, Thomas P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100715</creationdate><title>Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction</title><author>Petitto, Sarah C. ; Tanwar, Kunaljeet S. ; Ghose, Sanjit K. ; Eng, Peter J. ; Trainor, Thomas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e78f31b1878b837128dfbf5bddd4c22d03ad6d0a7f930d81fc7b2c23c75853e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bonding</topic><topic>Chemical mechanical polished (CMP)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal structure</topic><topic>Crystal Truncation Rod (CTR) Diffraction</topic><topic>Diffraction</topic><topic>Exact sciences and technology</topic><topic>Iron</topic><topic>Magnetite</topic><topic>Magnetite (Fe 3O4)</topic><topic>Mechanical polishing</topic><topic>Physics</topic><topic>Surface chemistry</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petitto, Sarah C.</creatorcontrib><creatorcontrib>Tanwar, Kunaljeet S.</creatorcontrib><creatorcontrib>Ghose, Sanjit K.</creatorcontrib><creatorcontrib>Eng, Peter J.</creatorcontrib><creatorcontrib>Trainor, Thomas P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petitto, Sarah C.</au><au>Tanwar, Kunaljeet S.</au><au>Ghose, Sanjit K.</au><au>Eng, Peter J.</au><au>Trainor, Thomas P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction</atitle><jtitle>Surface science</jtitle><date>2010-07-15</date><risdate>2010</risdate><volume>604</volume><issue>13</issue><spage>1082</spage><epage>1093</epage><pages>1082-1093</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>X-ray crystal truncation rod (CTR) diffraction under hydrated conditions at circum-neutral pH was used to determine the surface structure of Fe
3O
4(111) following a wet chemical mechanical polishing (CMP) preparation method. The best-fit model to the CTR data shows the presence of two oxygen terminated domains that are chemically inequivalent and symmetrically distinct in the surface contribution ratio of 75% oxygen octahedral-iron (OOI) termination (
aO
2.61–
aO
1.00–
oh1Fe
2.55–
bO
1.00–
bO
3.00–
td1Fe
1.00–
oh2Fe
1.00–
td2Fe
1.00–R) to 25% oxygen mixed-iron (OMI) termination (
bO
1.00–
bO
3.00–
td1Fe
0–
oh2Fe
1.00–
td2Fe
1.00–
aO
3.00–
aO
1.00–
oh1Fe
3.00–R). An adsorbed water layer could not be constrained in the best-fit model. However, bond-valence analyses suggest that both of the surfaces are hydro-oxo terminated. Furthermore, the topmost iron layers of both domains are inferred to be occupied with the redox active Fe
2+ and Fe
3+ cations indicating that these irons are the principle irons involved in controlling the surface reactivity of magnetite in industrial and environmentally relevant conditions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2010.03.014</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2010-07, Vol.604 (13), p.1082-1093 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_753669689 |
source | Elsevier ScienceDirect Journals |
subjects | Bonding Chemical mechanical polished (CMP) Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crystal structure Crystal Truncation Rod (CTR) Diffraction Diffraction Exact sciences and technology Iron Magnetite Magnetite (Fe 3O4) Mechanical polishing Physics Surface chemistry Surface structure |
title | Surface structure of magnetite (111) under hydrated conditions by crystal truncation rod diffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20structure%20of%20magnetite%20(111)%20under%20hydrated%20conditions%20by%20crystal%20truncation%20rod%20diffraction&rft.jtitle=Surface%20science&rft.au=Petitto,%20Sarah%20C.&rft.date=2010-07-15&rft.volume=604&rft.issue=13&rft.spage=1082&rft.epage=1093&rft.pages=1082-1093&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2010.03.014&rft_dat=%3Cproquest_cross%3E753669689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753669689&rft_id=info:pmid/&rft_els_id=S003960281000110X&rfr_iscdi=true |