A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline
An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was propos...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2010-09, Vol.30 (13), p.1574-1579 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1579 |
---|---|
container_issue | 13 |
container_start_page | 1574 |
container_title | Applied thermal engineering |
container_volume | 30 |
creator | Lu, T. Liu, B. Jiang, P.X. Zhang, Y.W. Li, H. |
description | An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was proposed to solve the IHCP using temperature measurements on the outer wall. In order to examine the accuracy of estimations, some comparisons have been made in this case. The temperatures obtained from the solution of the direct heat conduction problem (DHCP) using the finite element method (FEM) were pseudo-experimental input data on the outer wall for the IHCP. Comparisons of the estimated fluid temperatures with experimental fluid temperatures near the inner wall showed that the IHCP could accurately capture the actual temperature in form of the frequency of the temperature fluctuations. The analysis also showed that the IHCP needed at least 13 measurement points for the average absolute error to be dramatically reduced for the present IHCP with 37 nodes on each half of the pipe wall. |
doi_str_mv | 10.1016/j.applthermaleng.2010.03.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753669284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431110001213</els_id><sourcerecordid>753669284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-ddf434b5dd157ec0295c01f3db05a8b58541b973494dcfb69b39dc50acb1a0ac3</originalsourceid><addsrcrecordid>eNqNUE1PAyEQ5aCJWv0PHDSetsIC7ZJ4MY1fSRMveiYszFYall2BrfHfS1Nj4s3LzOG9mfeB0CUlc0ro4mY71-Po8zvEXnsIm3lNCkTYnFB6hE4pE7LijNITdJbSlhBaN0t-iswdzp9DZV0PIbkhaI9d2EFMgN9BZ2yGYCeTC4LHOLQe-oJjSNn1OruwwUURd35yFmfoR4g6TxH2HI1HN4J3Ac7Rcad9goufPUNvD_evq6dq_fL4vLpbV4aLJlfWdpzxVlhLxRIMqaUwhHbMtkTophWN4LSVS8Ylt6ZrF7Jl0hpBtGmpLpPN0PXhb3H6MRWPqnfJgPc6wDAltRRssZB1wwvz9sA0cUgpQqfGWALFL0WJ2teptupvnWpfpyJMlTrL-dWPkE5G-y7qYFz6_VHXspGsOJ2hhwMPSuqdg6iScRAMWBfBZGUH9z_BbwGrmI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753669284</pqid></control><display><type>article</type><title>A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lu, T. ; Liu, B. ; Jiang, P.X. ; Zhang, Y.W. ; Li, H.</creator><creatorcontrib>Lu, T. ; Liu, B. ; Jiang, P.X. ; Zhang, Y.W. ; Li, H.</creatorcontrib><description>An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was proposed to solve the IHCP using temperature measurements on the outer wall. In order to examine the accuracy of estimations, some comparisons have been made in this case. The temperatures obtained from the solution of the direct heat conduction problem (DHCP) using the finite element method (FEM) were pseudo-experimental input data on the outer wall for the IHCP. Comparisons of the estimated fluid temperatures with experimental fluid temperatures near the inner wall showed that the IHCP could accurately capture the actual temperature in form of the frequency of the temperature fluctuations. The analysis also showed that the IHCP needed at least 13 measurement points for the average absolute error to be dramatically reduced for the present IHCP with 37 nodes on each half of the pipe wall.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2010.03.011</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computational fluid dynamics ; Conduction ; Conjugate gradient method ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Finite element method ; Fluid flow ; Fluids ; Heat conduction ; Heat transfer ; Inverse ; Inverse heat conduction problem ; Temperature fluctuations ; Theoretical studies. Data and constants. Metering ; Walls</subject><ispartof>Applied thermal engineering, 2010-09, Vol.30 (13), p.1574-1579</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-ddf434b5dd157ec0295c01f3db05a8b58541b973494dcfb69b39dc50acb1a0ac3</citedby><cites>FETCH-LOGICAL-c458t-ddf434b5dd157ec0295c01f3db05a8b58541b973494dcfb69b39dc50acb1a0ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2010.03.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22989397$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, T.</creatorcontrib><creatorcontrib>Liu, B.</creatorcontrib><creatorcontrib>Jiang, P.X.</creatorcontrib><creatorcontrib>Zhang, Y.W.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><title>A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline</title><title>Applied thermal engineering</title><description>An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was proposed to solve the IHCP using temperature measurements on the outer wall. In order to examine the accuracy of estimations, some comparisons have been made in this case. The temperatures obtained from the solution of the direct heat conduction problem (DHCP) using the finite element method (FEM) were pseudo-experimental input data on the outer wall for the IHCP. Comparisons of the estimated fluid temperatures with experimental fluid temperatures near the inner wall showed that the IHCP could accurately capture the actual temperature in form of the frequency of the temperature fluctuations. The analysis also showed that the IHCP needed at least 13 measurement points for the average absolute error to be dramatically reduced for the present IHCP with 37 nodes on each half of the pipe wall.</description><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Conduction</subject><subject>Conjugate gradient method</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Inverse</subject><subject>Inverse heat conduction problem</subject><subject>Temperature fluctuations</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Walls</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNUE1PAyEQ5aCJWv0PHDSetsIC7ZJ4MY1fSRMveiYszFYall2BrfHfS1Nj4s3LzOG9mfeB0CUlc0ro4mY71-Po8zvEXnsIm3lNCkTYnFB6hE4pE7LijNITdJbSlhBaN0t-iswdzp9DZV0PIbkhaI9d2EFMgN9BZ2yGYCeTC4LHOLQe-oJjSNn1OruwwUURd35yFmfoR4g6TxH2HI1HN4J3Ac7Rcad9goufPUNvD_evq6dq_fL4vLpbV4aLJlfWdpzxVlhLxRIMqaUwhHbMtkTophWN4LSVS8Ylt6ZrF7Jl0hpBtGmpLpPN0PXhb3H6MRWPqnfJgPc6wDAltRRssZB1wwvz9sA0cUgpQqfGWALFL0WJ2teptupvnWpfpyJMlTrL-dWPkE5G-y7qYFz6_VHXspGsOJ2hhwMPSuqdg6iScRAMWBfBZGUH9z_BbwGrmI4</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Lu, T.</creator><creator>Liu, B.</creator><creator>Jiang, P.X.</creator><creator>Zhang, Y.W.</creator><creator>Li, H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100901</creationdate><title>A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline</title><author>Lu, T. ; Liu, B. ; Jiang, P.X. ; Zhang, Y.W. ; Li, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-ddf434b5dd157ec0295c01f3db05a8b58541b973494dcfb69b39dc50acb1a0ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Conduction</topic><topic>Conjugate gradient method</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Inverse</topic><topic>Inverse heat conduction problem</topic><topic>Temperature fluctuations</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, T.</creatorcontrib><creatorcontrib>Liu, B.</creatorcontrib><creatorcontrib>Jiang, P.X.</creatorcontrib><creatorcontrib>Zhang, Y.W.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, T.</au><au>Liu, B.</au><au>Jiang, P.X.</au><au>Zhang, Y.W.</au><au>Li, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline</atitle><jtitle>Applied thermal engineering</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>30</volume><issue>13</issue><spage>1574</spage><epage>1579</epage><pages>1574-1579</pages><issn>1359-4311</issn><abstract>An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was proposed to solve the IHCP using temperature measurements on the outer wall. In order to examine the accuracy of estimations, some comparisons have been made in this case. The temperatures obtained from the solution of the direct heat conduction problem (DHCP) using the finite element method (FEM) were pseudo-experimental input data on the outer wall for the IHCP. Comparisons of the estimated fluid temperatures with experimental fluid temperatures near the inner wall showed that the IHCP could accurately capture the actual temperature in form of the frequency of the temperature fluctuations. The analysis also showed that the IHCP needed at least 13 measurement points for the average absolute error to be dramatically reduced for the present IHCP with 37 nodes on each half of the pipe wall.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2010.03.011</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2010-09, Vol.30 (13), p.1574-1579 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_753669284 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Computational fluid dynamics Conduction Conjugate gradient method Energy Energy. Thermal use of fuels Exact sciences and technology Finite element method Fluid flow Fluids Heat conduction Heat transfer Inverse Inverse heat conduction problem Temperature fluctuations Theoretical studies. Data and constants. Metering Walls |
title | A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-dimensional%20inverse%20heat%20conduction%20problem%20in%20estimating%20the%20fluid%20temperature%20in%20a%20pipeline&rft.jtitle=Applied%20thermal%20engineering&rft.au=Lu,%20T.&rft.date=2010-09-01&rft.volume=30&rft.issue=13&rft.spage=1574&rft.epage=1579&rft.pages=1574-1579&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2010.03.011&rft_dat=%3Cproquest_cross%3E753669284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753669284&rft_id=info:pmid/&rft_els_id=S1359431110001213&rfr_iscdi=true |