A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline

An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2010-09, Vol.30 (13), p.1574-1579
Hauptverfasser: Lu, T., Liu, B., Jiang, P.X., Zhang, Y.W., Li, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1579
container_issue 13
container_start_page 1574
container_title Applied thermal engineering
container_volume 30
creator Lu, T.
Liu, B.
Jiang, P.X.
Zhang, Y.W.
Li, H.
description An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was proposed to solve the IHCP using temperature measurements on the outer wall. In order to examine the accuracy of estimations, some comparisons have been made in this case. The temperatures obtained from the solution of the direct heat conduction problem (DHCP) using the finite element method (FEM) were pseudo-experimental input data on the outer wall for the IHCP. Comparisons of the estimated fluid temperatures with experimental fluid temperatures near the inner wall showed that the IHCP could accurately capture the actual temperature in form of the frequency of the temperature fluctuations. The analysis also showed that the IHCP needed at least 13 measurement points for the average absolute error to be dramatically reduced for the present IHCP with 37 nodes on each half of the pipe wall.
doi_str_mv 10.1016/j.applthermaleng.2010.03.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753669284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431110001213</els_id><sourcerecordid>753669284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-ddf434b5dd157ec0295c01f3db05a8b58541b973494dcfb69b39dc50acb1a0ac3</originalsourceid><addsrcrecordid>eNqNUE1PAyEQ5aCJWv0PHDSetsIC7ZJ4MY1fSRMveiYszFYall2BrfHfS1Nj4s3LzOG9mfeB0CUlc0ro4mY71-Po8zvEXnsIm3lNCkTYnFB6hE4pE7LijNITdJbSlhBaN0t-iswdzp9DZV0PIbkhaI9d2EFMgN9BZ2yGYCeTC4LHOLQe-oJjSNn1OruwwUURd35yFmfoR4g6TxH2HI1HN4J3Ac7Rcad9goufPUNvD_evq6dq_fL4vLpbV4aLJlfWdpzxVlhLxRIMqaUwhHbMtkTophWN4LSVS8Ylt6ZrF7Jl0hpBtGmpLpPN0PXhb3H6MRWPqnfJgPc6wDAltRRssZB1wwvz9sA0cUgpQqfGWALFL0WJ2teptupvnWpfpyJMlTrL-dWPkE5G-y7qYFz6_VHXspGsOJ2hhwMPSuqdg6iScRAMWBfBZGUH9z_BbwGrmI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753669284</pqid></control><display><type>article</type><title>A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lu, T. ; Liu, B. ; Jiang, P.X. ; Zhang, Y.W. ; Li, H.</creator><creatorcontrib>Lu, T. ; Liu, B. ; Jiang, P.X. ; Zhang, Y.W. ; Li, H.</creatorcontrib><description>An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was proposed to solve the IHCP using temperature measurements on the outer wall. In order to examine the accuracy of estimations, some comparisons have been made in this case. The temperatures obtained from the solution of the direct heat conduction problem (DHCP) using the finite element method (FEM) were pseudo-experimental input data on the outer wall for the IHCP. Comparisons of the estimated fluid temperatures with experimental fluid temperatures near the inner wall showed that the IHCP could accurately capture the actual temperature in form of the frequency of the temperature fluctuations. The analysis also showed that the IHCP needed at least 13 measurement points for the average absolute error to be dramatically reduced for the present IHCP with 37 nodes on each half of the pipe wall.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2010.03.011</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computational fluid dynamics ; Conduction ; Conjugate gradient method ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Finite element method ; Fluid flow ; Fluids ; Heat conduction ; Heat transfer ; Inverse ; Inverse heat conduction problem ; Temperature fluctuations ; Theoretical studies. Data and constants. Metering ; Walls</subject><ispartof>Applied thermal engineering, 2010-09, Vol.30 (13), p.1574-1579</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-ddf434b5dd157ec0295c01f3db05a8b58541b973494dcfb69b39dc50acb1a0ac3</citedby><cites>FETCH-LOGICAL-c458t-ddf434b5dd157ec0295c01f3db05a8b58541b973494dcfb69b39dc50acb1a0ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2010.03.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22989397$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, T.</creatorcontrib><creatorcontrib>Liu, B.</creatorcontrib><creatorcontrib>Jiang, P.X.</creatorcontrib><creatorcontrib>Zhang, Y.W.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><title>A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline</title><title>Applied thermal engineering</title><description>An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was proposed to solve the IHCP using temperature measurements on the outer wall. In order to examine the accuracy of estimations, some comparisons have been made in this case. The temperatures obtained from the solution of the direct heat conduction problem (DHCP) using the finite element method (FEM) were pseudo-experimental input data on the outer wall for the IHCP. Comparisons of the estimated fluid temperatures with experimental fluid temperatures near the inner wall showed that the IHCP could accurately capture the actual temperature in form of the frequency of the temperature fluctuations. The analysis also showed that the IHCP needed at least 13 measurement points for the average absolute error to be dramatically reduced for the present IHCP with 37 nodes on each half of the pipe wall.</description><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Conduction</subject><subject>Conjugate gradient method</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Inverse</subject><subject>Inverse heat conduction problem</subject><subject>Temperature fluctuations</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Walls</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNUE1PAyEQ5aCJWv0PHDSetsIC7ZJ4MY1fSRMveiYszFYall2BrfHfS1Nj4s3LzOG9mfeB0CUlc0ro4mY71-Po8zvEXnsIm3lNCkTYnFB6hE4pE7LijNITdJbSlhBaN0t-iswdzp9DZV0PIbkhaI9d2EFMgN9BZ2yGYCeTC4LHOLQe-oJjSNn1OruwwUURd35yFmfoR4g6TxH2HI1HN4J3Ac7Rcad9goufPUNvD_evq6dq_fL4vLpbV4aLJlfWdpzxVlhLxRIMqaUwhHbMtkTophWN4LSVS8Ylt6ZrF7Jl0hpBtGmpLpPN0PXhb3H6MRWPqnfJgPc6wDAltRRssZB1wwvz9sA0cUgpQqfGWALFL0WJ2teptupvnWpfpyJMlTrL-dWPkE5G-y7qYFz6_VHXspGsOJ2hhwMPSuqdg6iScRAMWBfBZGUH9z_BbwGrmI4</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Lu, T.</creator><creator>Liu, B.</creator><creator>Jiang, P.X.</creator><creator>Zhang, Y.W.</creator><creator>Li, H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100901</creationdate><title>A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline</title><author>Lu, T. ; Liu, B. ; Jiang, P.X. ; Zhang, Y.W. ; Li, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-ddf434b5dd157ec0295c01f3db05a8b58541b973494dcfb69b39dc50acb1a0ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Conduction</topic><topic>Conjugate gradient method</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Inverse</topic><topic>Inverse heat conduction problem</topic><topic>Temperature fluctuations</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, T.</creatorcontrib><creatorcontrib>Liu, B.</creatorcontrib><creatorcontrib>Jiang, P.X.</creatorcontrib><creatorcontrib>Zhang, Y.W.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, T.</au><au>Liu, B.</au><au>Jiang, P.X.</au><au>Zhang, Y.W.</au><au>Li, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline</atitle><jtitle>Applied thermal engineering</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>30</volume><issue>13</issue><spage>1574</spage><epage>1579</epage><pages>1574-1579</pages><issn>1359-4311</issn><abstract>An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was proposed to solve the IHCP using temperature measurements on the outer wall. In order to examine the accuracy of estimations, some comparisons have been made in this case. The temperatures obtained from the solution of the direct heat conduction problem (DHCP) using the finite element method (FEM) were pseudo-experimental input data on the outer wall for the IHCP. Comparisons of the estimated fluid temperatures with experimental fluid temperatures near the inner wall showed that the IHCP could accurately capture the actual temperature in form of the frequency of the temperature fluctuations. The analysis also showed that the IHCP needed at least 13 measurement points for the average absolute error to be dramatically reduced for the present IHCP with 37 nodes on each half of the pipe wall.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2010.03.011</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2010-09, Vol.30 (13), p.1574-1579
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_753669284
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Computational fluid dynamics
Conduction
Conjugate gradient method
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Finite element method
Fluid flow
Fluids
Heat conduction
Heat transfer
Inverse
Inverse heat conduction problem
Temperature fluctuations
Theoretical studies. Data and constants. Metering
Walls
title A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-dimensional%20inverse%20heat%20conduction%20problem%20in%20estimating%20the%20fluid%20temperature%20in%20a%20pipeline&rft.jtitle=Applied%20thermal%20engineering&rft.au=Lu,%20T.&rft.date=2010-09-01&rft.volume=30&rft.issue=13&rft.spage=1574&rft.epage=1579&rft.pages=1574-1579&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2010.03.011&rft_dat=%3Cproquest_cross%3E753669284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753669284&rft_id=info:pmid/&rft_els_id=S1359431110001213&rfr_iscdi=true