Intercomparison of Bulk Microphysics Schemes in Model Simulations of Polar Lows
Four spiraliform polar lows, two over the Sea of Japan and two over the Nordic Seas, were simulated with the Weather Research and Forecasting (WRF) model. Five mixed-phase bulk microphysics schemes (BMS) provided with WRF were run respectively in order to compare their performance in polar low simul...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2010-06, Vol.138 (6), p.2211-2228 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2228 |
---|---|
container_issue | 6 |
container_start_page | 2211 |
container_title | Monthly weather review |
container_volume | 138 |
creator | LONGTAO WU PETTY, Grant W |
description | Four spiraliform polar lows, two over the Sea of Japan and two over the Nordic Seas, were simulated with the Weather Research and Forecasting (WRF) model. Five mixed-phase bulk microphysics schemes (BMS) provided with WRF were run respectively in order to compare their performance in polar low simulations. The observed cloud-top temperatures (CTTs) were compared with the model simulations. Precipitation rates estimated by the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and gauge-calibrated surface radar precipitation estimates around Japan were also used for validation. Although definitive validation is not possible with the available data, results from the WRF Single-Moment 6-class (WSM6) scheme appear to reproduce the cloud and precipitation processes most realistically. The model produced precipitation intensities comparable to validation products over the Sea of Japan. However, in the Nordic Seas cases, all five schemes produced significantly more precipitation than the AMSR-E estimates even though the latter estimates are known to average slightly high in the same region when validated against monthly totals measured at Jan Mayen Island (Norway). |
doi_str_mv | 10.1175/2010mwr3122.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753668748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087467481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-6eef7a2e31082e39cad56bbd173d17b741ef0dc4d734e3454adec85b575e757b3</originalsourceid><addsrcrecordid>eNp1kc1Lw0AQxRdRsFaP3oMinlL3e5OjFj8KLRWreAybzYZuTbJxN6H0v3dDiwfBw8wc5vcewzwALhGcICTYHYYI1ltHEMYTdARGiGEYQ5qSYzCCEIsYckpPwZn3Gwgh5xSPwHLWdNopW7fSGW-byJbRQ199RQujnG3XO2-Uj1ZqrWvtI9NEC1voKlqZuq9kZ2zjB8WrraSL5nbrz8FJKSuvLw5zDD6eHt-nL_F8-Tyb3s9jRVnaxVzrUkisCYJJ6KmSBeN5XiBBQuWCIl3CQtFCEKoJZVQWWiUsZ4JpwUROxuB279s6-91r32W18UpXlWy07X0mGOE8ETQJ5NUfcmN714TjMo4xJDjBNEDX_0FhLzAVGPFAxXsqvMZ7p8usdaaWbpchmA0RZEMEi8-3IYIMBf7m4Cq9klXpZKOM_xVhnKaCQEF-AIHNhQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827247216</pqid></control><display><type>article</type><title>Intercomparison of Bulk Microphysics Schemes in Model Simulations of Polar Lows</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>LONGTAO WU ; PETTY, Grant W</creator><creatorcontrib>LONGTAO WU ; PETTY, Grant W</creatorcontrib><description>Four spiraliform polar lows, two over the Sea of Japan and two over the Nordic Seas, were simulated with the Weather Research and Forecasting (WRF) model. Five mixed-phase bulk microphysics schemes (BMS) provided with WRF were run respectively in order to compare their performance in polar low simulations. The observed cloud-top temperatures (CTTs) were compared with the model simulations. Precipitation rates estimated by the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and gauge-calibrated surface radar precipitation estimates around Japan were also used for validation. Although definitive validation is not possible with the available data, results from the WRF Single-Moment 6-class (WSM6) scheme appear to reproduce the cloud and precipitation processes most realistically. The model produced precipitation intensities comparable to validation products over the Sea of Japan. However, in the Nordic Seas cases, all five schemes produced significantly more precipitation than the AMSR-E estimates even though the latter estimates are known to average slightly high in the same region when validated against monthly totals measured at Jan Mayen Island (Norway).</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/2010mwr3122.1</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Climatology ; Computer simulation ; Cyclones ; Datasets ; Earth, ocean, space ; Estimates ; Exact sciences and technology ; External geophysics ; Ice ; Intercomparison ; Mathematical models ; Meteorology ; Microphysics ; Microwave radiometers ; Modelling ; Performance evaluation ; Polar lows ; Precipitation ; Precipitation estimation ; Precipitation intensity ; Precipitation processes ; Radar ; Radiometers ; Rainfall intensity ; Sea of Japan ; Simulation ; Snow ; Studies ; Water in the atmosphere (humidity, clouds, evaporation, precipitation) ; Weather ; Weather analysis and prediction ; Weather forecasting ; Wind</subject><ispartof>Monthly weather review, 2010-06, Vol.138 (6), p.2211-2228</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2010</rights><rights>Copyright American Meteorological Society Jun 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-6eef7a2e31082e39cad56bbd173d17b741ef0dc4d734e3454adec85b575e757b3</citedby><cites>FETCH-LOGICAL-c459t-6eef7a2e31082e39cad56bbd173d17b741ef0dc4d734e3454adec85b575e757b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22997307$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LONGTAO WU</creatorcontrib><creatorcontrib>PETTY, Grant W</creatorcontrib><title>Intercomparison of Bulk Microphysics Schemes in Model Simulations of Polar Lows</title><title>Monthly weather review</title><description>Four spiraliform polar lows, two over the Sea of Japan and two over the Nordic Seas, were simulated with the Weather Research and Forecasting (WRF) model. Five mixed-phase bulk microphysics schemes (BMS) provided with WRF were run respectively in order to compare their performance in polar low simulations. The observed cloud-top temperatures (CTTs) were compared with the model simulations. Precipitation rates estimated by the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and gauge-calibrated surface radar precipitation estimates around Japan were also used for validation. Although definitive validation is not possible with the available data, results from the WRF Single-Moment 6-class (WSM6) scheme appear to reproduce the cloud and precipitation processes most realistically. The model produced precipitation intensities comparable to validation products over the Sea of Japan. However, in the Nordic Seas cases, all five schemes produced significantly more precipitation than the AMSR-E estimates even though the latter estimates are known to average slightly high in the same region when validated against monthly totals measured at Jan Mayen Island (Norway).</description><subject>Climatology</subject><subject>Computer simulation</subject><subject>Cyclones</subject><subject>Datasets</subject><subject>Earth, ocean, space</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Ice</subject><subject>Intercomparison</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Microphysics</subject><subject>Microwave radiometers</subject><subject>Modelling</subject><subject>Performance evaluation</subject><subject>Polar lows</subject><subject>Precipitation</subject><subject>Precipitation estimation</subject><subject>Precipitation intensity</subject><subject>Precipitation processes</subject><subject>Radar</subject><subject>Radiometers</subject><subject>Rainfall intensity</subject><subject>Sea of Japan</subject><subject>Simulation</subject><subject>Snow</subject><subject>Studies</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><subject>Weather</subject><subject>Weather analysis and prediction</subject><subject>Weather forecasting</subject><subject>Wind</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1Lw0AQxRdRsFaP3oMinlL3e5OjFj8KLRWreAybzYZuTbJxN6H0v3dDiwfBw8wc5vcewzwALhGcICTYHYYI1ltHEMYTdARGiGEYQ5qSYzCCEIsYckpPwZn3Gwgh5xSPwHLWdNopW7fSGW-byJbRQ199RQujnG3XO2-Uj1ZqrWvtI9NEC1voKlqZuq9kZ2zjB8WrraSL5nbrz8FJKSuvLw5zDD6eHt-nL_F8-Tyb3s9jRVnaxVzrUkisCYJJ6KmSBeN5XiBBQuWCIl3CQtFCEKoJZVQWWiUsZ4JpwUROxuB279s6-91r32W18UpXlWy07X0mGOE8ETQJ5NUfcmN714TjMo4xJDjBNEDX_0FhLzAVGPFAxXsqvMZ7p8usdaaWbpchmA0RZEMEi8-3IYIMBf7m4Cq9klXpZKOM_xVhnKaCQEF-AIHNhQU</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>LONGTAO WU</creator><creator>PETTY, Grant W</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100601</creationdate><title>Intercomparison of Bulk Microphysics Schemes in Model Simulations of Polar Lows</title><author>LONGTAO WU ; PETTY, Grant W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-6eef7a2e31082e39cad56bbd173d17b741ef0dc4d734e3454adec85b575e757b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Climatology</topic><topic>Computer simulation</topic><topic>Cyclones</topic><topic>Datasets</topic><topic>Earth, ocean, space</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Ice</topic><topic>Intercomparison</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Microphysics</topic><topic>Microwave radiometers</topic><topic>Modelling</topic><topic>Performance evaluation</topic><topic>Polar lows</topic><topic>Precipitation</topic><topic>Precipitation estimation</topic><topic>Precipitation intensity</topic><topic>Precipitation processes</topic><topic>Radar</topic><topic>Radiometers</topic><topic>Rainfall intensity</topic><topic>Sea of Japan</topic><topic>Simulation</topic><topic>Snow</topic><topic>Studies</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><topic>Weather</topic><topic>Weather analysis and prediction</topic><topic>Weather forecasting</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LONGTAO WU</creatorcontrib><creatorcontrib>PETTY, Grant W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LONGTAO WU</au><au>PETTY, Grant W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intercomparison of Bulk Microphysics Schemes in Model Simulations of Polar Lows</atitle><jtitle>Monthly weather review</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>138</volume><issue>6</issue><spage>2211</spage><epage>2228</epage><pages>2211-2228</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>Four spiraliform polar lows, two over the Sea of Japan and two over the Nordic Seas, were simulated with the Weather Research and Forecasting (WRF) model. Five mixed-phase bulk microphysics schemes (BMS) provided with WRF were run respectively in order to compare their performance in polar low simulations. The observed cloud-top temperatures (CTTs) were compared with the model simulations. Precipitation rates estimated by the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and gauge-calibrated surface radar precipitation estimates around Japan were also used for validation. Although definitive validation is not possible with the available data, results from the WRF Single-Moment 6-class (WSM6) scheme appear to reproduce the cloud and precipitation processes most realistically. The model produced precipitation intensities comparable to validation products over the Sea of Japan. However, in the Nordic Seas cases, all five schemes produced significantly more precipitation than the AMSR-E estimates even though the latter estimates are known to average slightly high in the same region when validated against monthly totals measured at Jan Mayen Island (Norway).</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2010mwr3122.1</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2010-06, Vol.138 (6), p.2211-2228 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_proquest_miscellaneous_753668748 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Climatology Computer simulation Cyclones Datasets Earth, ocean, space Estimates Exact sciences and technology External geophysics Ice Intercomparison Mathematical models Meteorology Microphysics Microwave radiometers Modelling Performance evaluation Polar lows Precipitation Precipitation estimation Precipitation intensity Precipitation processes Radar Radiometers Rainfall intensity Sea of Japan Simulation Snow Studies Water in the atmosphere (humidity, clouds, evaporation, precipitation) Weather Weather analysis and prediction Weather forecasting Wind |
title | Intercomparison of Bulk Microphysics Schemes in Model Simulations of Polar Lows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intercomparison%20of%20Bulk%20Microphysics%20Schemes%20in%20Model%20Simulations%20of%20Polar%20Lows&rft.jtitle=Monthly%20weather%20review&rft.au=LONGTAO%20WU&rft.date=2010-06-01&rft.volume=138&rft.issue=6&rft.spage=2211&rft.epage=2228&rft.pages=2211-2228&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/2010mwr3122.1&rft_dat=%3Cproquest_cross%3E2087467481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827247216&rft_id=info:pmid/&rfr_iscdi=true |