Approximation Properties of Julia Polynomials
Let G be a finite simply connected domain in the complex plane , bounded by a rectifiable Jordan curve L, and let w = ^sub 0^ (z) be the Riemann conformal mapping of G onto D(0, r^sub 0^) := {w : |w| < r^sub 0^}, normalized by the conditions ^sub 0^ (z^sub 0^) = 0, '^sub 0^ (z^sub 0^) = 1. I...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2007-07, Vol.23 (7), p.1303-1310 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1310 |
---|---|
container_issue | 7 |
container_start_page | 1303 |
container_title | Acta mathematica Sinica. English series |
container_volume | 23 |
creator | Israfilov, Daniyal M Oktay, Burcin |
description | Let G be a finite simply connected domain in the complex plane , bounded by a rectifiable Jordan curve L, and let w = ^sub 0^ (z) be the Riemann conformal mapping of G onto D(0, r^sub 0^) := {w : |w| < r^sub 0^}, normalized by the conditions ^sub 0^ (z^sub 0^) = 0, '^sub 0^ (z^sub 0^) = 1. In this work, the rate of approximation of ^sub 0^ by the polynomials, defined with the help of the solutions of some extremal problem, in a closed domain G is studied. This rate depends on the geometric properties of the boundary L.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s10114-005-0730-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753663223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753663223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-b01a48564ee22106d2f9280eaa4844ef0be11e69e2589c518006c0ed76e7ee203</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFZ_gLfgxdPqzG72I8dStCoFe9DzkqYTSEmycTcB--_d0p48vcPwzDDzMHaP8IQA5jkiIOYcQHEwEri4YDPMZcGNRnN5rq1Cfc1uYtwnThWgZ4wvhiH436Yrx8b32Sb4gcLYUMx8nX1MbVNmG98eet81ZRtv2VWdgu7OOWffry9fyze-_ly9LxdrXgmlR74FLHOrdE4kBILeiboQFqhM3TynGraESLogoWxRKbQAugLaGU0mjYCcs8fT3nTbz0RxdF0TK2rbsic_RWeU1FoKIRP58I_c-yn06TinwYC1yuoE4Qmqgo8xUO2GkD4OB4fgjvrcSZ9LWtxRnxPyD1SHYNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>607088586</pqid></control><display><type>article</type><title>Approximation Properties of Julia Polynomials</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Israfilov, Daniyal M ; Oktay, Burcin</creator><creatorcontrib>Israfilov, Daniyal M ; Oktay, Burcin</creatorcontrib><description>Let G be a finite simply connected domain in the complex plane , bounded by a rectifiable Jordan curve L, and let w = ^sub 0^ (z) be the Riemann conformal mapping of G onto D(0, r^sub 0^) := {w : |w| < r^sub 0^}, normalized by the conditions ^sub 0^ (z^sub 0^) = 0, '^sub 0^ (z^sub 0^) = 1. In this work, the rate of approximation of ^sub 0^ by the polynomials, defined with the help of the solutions of some extremal problem, in a closed domain G is studied. This rate depends on the geometric properties of the boundary L.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-005-0730-2</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Approximation ; Conformal mapping ; Mathematical analysis ; Planes ; Polynomials ; Studies</subject><ispartof>Acta mathematica Sinica. English series, 2007-07, Vol.23 (7), p.1303-1310</ispartof><rights>Springer-Verlag Berlin Heidelberg 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-b01a48564ee22106d2f9280eaa4844ef0be11e69e2589c518006c0ed76e7ee203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Israfilov, Daniyal M</creatorcontrib><creatorcontrib>Oktay, Burcin</creatorcontrib><title>Approximation Properties of Julia Polynomials</title><title>Acta mathematica Sinica. English series</title><description>Let G be a finite simply connected domain in the complex plane , bounded by a rectifiable Jordan curve L, and let w = ^sub 0^ (z) be the Riemann conformal mapping of G onto D(0, r^sub 0^) := {w : |w| < r^sub 0^}, normalized by the conditions ^sub 0^ (z^sub 0^) = 0, '^sub 0^ (z^sub 0^) = 1. In this work, the rate of approximation of ^sub 0^ by the polynomials, defined with the help of the solutions of some extremal problem, in a closed domain G is studied. This rate depends on the geometric properties of the boundary L.[PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Conformal mapping</subject><subject>Mathematical analysis</subject><subject>Planes</subject><subject>Polynomials</subject><subject>Studies</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1Lw0AQhhdRsFZ_gLfgxdPqzG72I8dStCoFe9DzkqYTSEmycTcB--_d0p48vcPwzDDzMHaP8IQA5jkiIOYcQHEwEri4YDPMZcGNRnN5rq1Cfc1uYtwnThWgZ4wvhiH436Yrx8b32Sb4gcLYUMx8nX1MbVNmG98eet81ZRtv2VWdgu7OOWffry9fyze-_ly9LxdrXgmlR74FLHOrdE4kBILeiboQFqhM3TynGraESLogoWxRKbQAugLaGU0mjYCcs8fT3nTbz0RxdF0TK2rbsic_RWeU1FoKIRP58I_c-yn06TinwYC1yuoE4Qmqgo8xUO2GkD4OB4fgjvrcSZ9LWtxRnxPyD1SHYNo</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Israfilov, Daniyal M</creator><creator>Oktay, Burcin</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20070701</creationdate><title>Approximation Properties of Julia Polynomials</title><author>Israfilov, Daniyal M ; Oktay, Burcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-b01a48564ee22106d2f9280eaa4844ef0be11e69e2589c518006c0ed76e7ee203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Approximation</topic><topic>Conformal mapping</topic><topic>Mathematical analysis</topic><topic>Planes</topic><topic>Polynomials</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Israfilov, Daniyal M</creatorcontrib><creatorcontrib>Oktay, Burcin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Israfilov, Daniyal M</au><au>Oktay, Burcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation Properties of Julia Polynomials</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>23</volume><issue>7</issue><spage>1303</spage><epage>1310</epage><pages>1303-1310</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>Let G be a finite simply connected domain in the complex plane , bounded by a rectifiable Jordan curve L, and let w = ^sub 0^ (z) be the Riemann conformal mapping of G onto D(0, r^sub 0^) := {w : |w| < r^sub 0^}, normalized by the conditions ^sub 0^ (z^sub 0^) = 0, '^sub 0^ (z^sub 0^) = 1. In this work, the rate of approximation of ^sub 0^ by the polynomials, defined with the help of the solutions of some extremal problem, in a closed domain G is studied. This rate depends on the geometric properties of the boundary L.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10114-005-0730-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2007-07, Vol.23 (7), p.1303-1310 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_miscellaneous_753663223 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Approximation Conformal mapping Mathematical analysis Planes Polynomials Studies |
title | Approximation Properties of Julia Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20Properties%20of%20Julia%20Polynomials&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Israfilov,%20Daniyal%20M&rft.date=2007-07-01&rft.volume=23&rft.issue=7&rft.spage=1303&rft.epage=1310&rft.pages=1303-1310&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-005-0730-2&rft_dat=%3Cproquest_cross%3E753663223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=607088586&rft_id=info:pmid/&rfr_iscdi=true |