An Efficient Blind Image Deblurring Algorithm
This paper presents a novel algorithm which concerns with the fast implement of blind image deblurring with a well-reconstructed original image. Firstly, we model both the original image and the blur utilizing the harmonic model in the Sobolev image space, based on which, the prior distributions of...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2010-01, Vol.439-440, p.908-913 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 913 |
---|---|
container_issue | |
container_start_page | 908 |
container_title | Key engineering materials |
container_volume | 439-440 |
creator | Xiao, Su Yao, Hao Wei Han, Guo Qiang Wo, Yan |
description | This paper presents a novel algorithm which concerns with the fast implement of blind image deblurring with a well-reconstructed original image. Firstly, we model both the original image and the blur utilizing the harmonic model in the Sobolev image space, based on which, the prior distributions of them are obtained; Secondly, the Gamma distribution is used as the prior distributions of the unknown parameters to incorporate more prior knowledge for blind image deblurring; Finally, we estimate the original image, the blur and the unknown parameters simultaneously and iteratively by the evidence analysis method. The experimental results show the efficiency and the competitive performance compared of the proposed algorithm with existing blind image deblurring methods. |
doi_str_mv | 10.4028/www.scientific.net/KEM.439-440.908 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753661093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753661093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-f21458f7d50c5f6371fba5efd56f0a8f43e099d3a2daf7aaf52f2e1402c13d473</originalsourceid><addsrcrecordid>eNqV0E1LwzAYwPEgCs7pd-hNENrlpUmb4151OPGi55ClyZbRpjNJGX57MyZ49vQ8h4c_PD8AnhAsSojryel0KoKy2kVrrCqcjpPX5VtREp6XJSw4rK_ACDGGc15xep12iEjOa8xuwV0IBwgJqhEdgXzqsqVJjXMrm7XWNdm6kzudLfS2Hby3bpdN213vbdx39-DGyDboh985Bp-r5cf8Jd-8P6_n002uCKxibjAqaW2qhkJFDSMVMltJtWkoM1DWpiQact4QiRtpKikNxQZrlD5TiDRlRcbg8dI9-v5r0CGKzgal21Y63Q9BVJQwhiAn6XJ2uVS-D8FrI47edtJ_CwTFmUokKvFHJRKVSFQiUYlEJRJViiwukeilC1GrvTj0g3fpxf9kfgAA9XvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753661093</pqid></control><display><type>article</type><title>An Efficient Blind Image Deblurring Algorithm</title><source>Scientific.net Journals</source><creator>Xiao, Su ; Yao, Hao Wei ; Han, Guo Qiang ; Wo, Yan</creator><creatorcontrib>Xiao, Su ; Yao, Hao Wei ; Han, Guo Qiang ; Wo, Yan</creatorcontrib><description>This paper presents a novel algorithm which concerns with the fast implement of blind image deblurring with a well-reconstructed original image. Firstly, we model both the original image and the blur utilizing the harmonic model in the Sobolev image space, based on which, the prior distributions of them are obtained; Secondly, the Gamma distribution is used as the prior distributions of the unknown parameters to incorporate more prior knowledge for blind image deblurring; Finally, we estimate the original image, the blur and the unknown parameters simultaneously and iteratively by the evidence analysis method. The experimental results show the efficiency and the competitive performance compared of the proposed algorithm with existing blind image deblurring methods.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.439-440.908</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Algorithms ; Blinds ; Estimates ; Harmonics ; Mathematical models</subject><ispartof>Key engineering materials, 2010-01, Vol.439-440, p.908-913</ispartof><rights>2010 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-f21458f7d50c5f6371fba5efd56f0a8f43e099d3a2daf7aaf52f2e1402c13d473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/930?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xiao, Su</creatorcontrib><creatorcontrib>Yao, Hao Wei</creatorcontrib><creatorcontrib>Han, Guo Qiang</creatorcontrib><creatorcontrib>Wo, Yan</creatorcontrib><title>An Efficient Blind Image Deblurring Algorithm</title><title>Key engineering materials</title><description>This paper presents a novel algorithm which concerns with the fast implement of blind image deblurring with a well-reconstructed original image. Firstly, we model both the original image and the blur utilizing the harmonic model in the Sobolev image space, based on which, the prior distributions of them are obtained; Secondly, the Gamma distribution is used as the prior distributions of the unknown parameters to incorporate more prior knowledge for blind image deblurring; Finally, we estimate the original image, the blur and the unknown parameters simultaneously and iteratively by the evidence analysis method. The experimental results show the efficiency and the competitive performance compared of the proposed algorithm with existing blind image deblurring methods.</description><subject>Algorithms</subject><subject>Blinds</subject><subject>Estimates</subject><subject>Harmonics</subject><subject>Mathematical models</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqV0E1LwzAYwPEgCs7pd-hNENrlpUmb4151OPGi55ClyZbRpjNJGX57MyZ49vQ8h4c_PD8AnhAsSojryel0KoKy2kVrrCqcjpPX5VtREp6XJSw4rK_ACDGGc15xep12iEjOa8xuwV0IBwgJqhEdgXzqsqVJjXMrm7XWNdm6kzudLfS2Hby3bpdN213vbdx39-DGyDboh985Bp-r5cf8Jd-8P6_n002uCKxibjAqaW2qhkJFDSMVMltJtWkoM1DWpiQact4QiRtpKikNxQZrlD5TiDRlRcbg8dI9-v5r0CGKzgal21Y63Q9BVJQwhiAn6XJ2uVS-D8FrI47edtJ_CwTFmUokKvFHJRKVSFQiUYlEJRJViiwukeilC1GrvTj0g3fpxf9kfgAA9XvI</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Xiao, Su</creator><creator>Yao, Hao Wei</creator><creator>Han, Guo Qiang</creator><creator>Wo, Yan</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100101</creationdate><title>An Efficient Blind Image Deblurring Algorithm</title><author>Xiao, Su ; Yao, Hao Wei ; Han, Guo Qiang ; Wo, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-f21458f7d50c5f6371fba5efd56f0a8f43e099d3a2daf7aaf52f2e1402c13d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Blinds</topic><topic>Estimates</topic><topic>Harmonics</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Su</creatorcontrib><creatorcontrib>Yao, Hao Wei</creatorcontrib><creatorcontrib>Han, Guo Qiang</creatorcontrib><creatorcontrib>Wo, Yan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Su</au><au>Yao, Hao Wei</au><au>Han, Guo Qiang</au><au>Wo, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Blind Image Deblurring Algorithm</atitle><jtitle>Key engineering materials</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>439-440</volume><spage>908</spage><epage>913</epage><pages>908-913</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>This paper presents a novel algorithm which concerns with the fast implement of blind image deblurring with a well-reconstructed original image. Firstly, we model both the original image and the blur utilizing the harmonic model in the Sobolev image space, based on which, the prior distributions of them are obtained; Secondly, the Gamma distribution is used as the prior distributions of the unknown parameters to incorporate more prior knowledge for blind image deblurring; Finally, we estimate the original image, the blur and the unknown parameters simultaneously and iteratively by the evidence analysis method. The experimental results show the efficiency and the competitive performance compared of the proposed algorithm with existing blind image deblurring methods.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.439-440.908</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key engineering materials, 2010-01, Vol.439-440, p.908-913 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_miscellaneous_753661093 |
source | Scientific.net Journals |
subjects | Algorithms Blinds Estimates Harmonics Mathematical models |
title | An Efficient Blind Image Deblurring Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Blind%20Image%20Deblurring%20Algorithm&rft.jtitle=Key%20engineering%20materials&rft.au=Xiao,%20Su&rft.date=2010-01-01&rft.volume=439-440&rft.spage=908&rft.epage=913&rft.pages=908-913&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.439-440.908&rft_dat=%3Cproquest_cross%3E753661093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753661093&rft_id=info:pmid/&rfr_iscdi=true |