An Efficient Blind Image Deblurring Algorithm

This paper presents a novel algorithm which concerns with the fast implement of blind image deblurring with a well-reconstructed original image. Firstly, we model both the original image and the blur utilizing the harmonic model in the Sobolev image space, based on which, the prior distributions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2010-01, Vol.439-440, p.908-913
Hauptverfasser: Xiao, Su, Yao, Hao Wei, Han, Guo Qiang, Wo, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 913
container_issue
container_start_page 908
container_title Key engineering materials
container_volume 439-440
creator Xiao, Su
Yao, Hao Wei
Han, Guo Qiang
Wo, Yan
description This paper presents a novel algorithm which concerns with the fast implement of blind image deblurring with a well-reconstructed original image. Firstly, we model both the original image and the blur utilizing the harmonic model in the Sobolev image space, based on which, the prior distributions of them are obtained; Secondly, the Gamma distribution is used as the prior distributions of the unknown parameters to incorporate more prior knowledge for blind image deblurring; Finally, we estimate the original image, the blur and the unknown parameters simultaneously and iteratively by the evidence analysis method. The experimental results show the efficiency and the competitive performance compared of the proposed algorithm with existing blind image deblurring methods.
doi_str_mv 10.4028/www.scientific.net/KEM.439-440.908
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753661093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753661093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-f21458f7d50c5f6371fba5efd56f0a8f43e099d3a2daf7aaf52f2e1402c13d473</originalsourceid><addsrcrecordid>eNqV0E1LwzAYwPEgCs7pd-hNENrlpUmb4151OPGi55ClyZbRpjNJGX57MyZ49vQ8h4c_PD8AnhAsSojryel0KoKy2kVrrCqcjpPX5VtREp6XJSw4rK_ACDGGc15xep12iEjOa8xuwV0IBwgJqhEdgXzqsqVJjXMrm7XWNdm6kzudLfS2Hby3bpdN213vbdx39-DGyDboh985Bp-r5cf8Jd-8P6_n002uCKxibjAqaW2qhkJFDSMVMltJtWkoM1DWpiQact4QiRtpKikNxQZrlD5TiDRlRcbg8dI9-v5r0CGKzgal21Y63Q9BVJQwhiAn6XJ2uVS-D8FrI47edtJ_CwTFmUokKvFHJRKVSFQiUYlEJRJViiwukeilC1GrvTj0g3fpxf9kfgAA9XvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753661093</pqid></control><display><type>article</type><title>An Efficient Blind Image Deblurring Algorithm</title><source>Scientific.net Journals</source><creator>Xiao, Su ; Yao, Hao Wei ; Han, Guo Qiang ; Wo, Yan</creator><creatorcontrib>Xiao, Su ; Yao, Hao Wei ; Han, Guo Qiang ; Wo, Yan</creatorcontrib><description>This paper presents a novel algorithm which concerns with the fast implement of blind image deblurring with a well-reconstructed original image. Firstly, we model both the original image and the blur utilizing the harmonic model in the Sobolev image space, based on which, the prior distributions of them are obtained; Secondly, the Gamma distribution is used as the prior distributions of the unknown parameters to incorporate more prior knowledge for blind image deblurring; Finally, we estimate the original image, the blur and the unknown parameters simultaneously and iteratively by the evidence analysis method. The experimental results show the efficiency and the competitive performance compared of the proposed algorithm with existing blind image deblurring methods.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.439-440.908</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Algorithms ; Blinds ; Estimates ; Harmonics ; Mathematical models</subject><ispartof>Key engineering materials, 2010-01, Vol.439-440, p.908-913</ispartof><rights>2010 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-f21458f7d50c5f6371fba5efd56f0a8f43e099d3a2daf7aaf52f2e1402c13d473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/930?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xiao, Su</creatorcontrib><creatorcontrib>Yao, Hao Wei</creatorcontrib><creatorcontrib>Han, Guo Qiang</creatorcontrib><creatorcontrib>Wo, Yan</creatorcontrib><title>An Efficient Blind Image Deblurring Algorithm</title><title>Key engineering materials</title><description>This paper presents a novel algorithm which concerns with the fast implement of blind image deblurring with a well-reconstructed original image. Firstly, we model both the original image and the blur utilizing the harmonic model in the Sobolev image space, based on which, the prior distributions of them are obtained; Secondly, the Gamma distribution is used as the prior distributions of the unknown parameters to incorporate more prior knowledge for blind image deblurring; Finally, we estimate the original image, the blur and the unknown parameters simultaneously and iteratively by the evidence analysis method. The experimental results show the efficiency and the competitive performance compared of the proposed algorithm with existing blind image deblurring methods.</description><subject>Algorithms</subject><subject>Blinds</subject><subject>Estimates</subject><subject>Harmonics</subject><subject>Mathematical models</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqV0E1LwzAYwPEgCs7pd-hNENrlpUmb4151OPGi55ClyZbRpjNJGX57MyZ49vQ8h4c_PD8AnhAsSojryel0KoKy2kVrrCqcjpPX5VtREp6XJSw4rK_ACDGGc15xep12iEjOa8xuwV0IBwgJqhEdgXzqsqVJjXMrm7XWNdm6kzudLfS2Hby3bpdN213vbdx39-DGyDboh985Bp-r5cf8Jd-8P6_n002uCKxibjAqaW2qhkJFDSMVMltJtWkoM1DWpiQact4QiRtpKikNxQZrlD5TiDRlRcbg8dI9-v5r0CGKzgal21Y63Q9BVJQwhiAn6XJ2uVS-D8FrI47edtJ_CwTFmUokKvFHJRKVSFQiUYlEJRJViiwukeilC1GrvTj0g3fpxf9kfgAA9XvI</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Xiao, Su</creator><creator>Yao, Hao Wei</creator><creator>Han, Guo Qiang</creator><creator>Wo, Yan</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100101</creationdate><title>An Efficient Blind Image Deblurring Algorithm</title><author>Xiao, Su ; Yao, Hao Wei ; Han, Guo Qiang ; Wo, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-f21458f7d50c5f6371fba5efd56f0a8f43e099d3a2daf7aaf52f2e1402c13d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Blinds</topic><topic>Estimates</topic><topic>Harmonics</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Su</creatorcontrib><creatorcontrib>Yao, Hao Wei</creatorcontrib><creatorcontrib>Han, Guo Qiang</creatorcontrib><creatorcontrib>Wo, Yan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Su</au><au>Yao, Hao Wei</au><au>Han, Guo Qiang</au><au>Wo, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Blind Image Deblurring Algorithm</atitle><jtitle>Key engineering materials</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>439-440</volume><spage>908</spage><epage>913</epage><pages>908-913</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>This paper presents a novel algorithm which concerns with the fast implement of blind image deblurring with a well-reconstructed original image. Firstly, we model both the original image and the blur utilizing the harmonic model in the Sobolev image space, based on which, the prior distributions of them are obtained; Secondly, the Gamma distribution is used as the prior distributions of the unknown parameters to incorporate more prior knowledge for blind image deblurring; Finally, we estimate the original image, the blur and the unknown parameters simultaneously and iteratively by the evidence analysis method. The experimental results show the efficiency and the competitive performance compared of the proposed algorithm with existing blind image deblurring methods.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.439-440.908</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2010-01, Vol.439-440, p.908-913
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_753661093
source Scientific.net Journals
subjects Algorithms
Blinds
Estimates
Harmonics
Mathematical models
title An Efficient Blind Image Deblurring Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Blind%20Image%20Deblurring%20Algorithm&rft.jtitle=Key%20engineering%20materials&rft.au=Xiao,%20Su&rft.date=2010-01-01&rft.volume=439-440&rft.spage=908&rft.epage=913&rft.pages=908-913&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.439-440.908&rft_dat=%3Cproquest_cross%3E753661093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753661093&rft_id=info:pmid/&rfr_iscdi=true