Femtosecond electronic response of atoms to ultra-intense X-rays
An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. H...
Gespeichert in:
Veröffentlicht in: | Nature 2010-07, Vol.466 (7302), p.56-61 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 7302 |
container_start_page | 56 |
container_title | Nature |
container_volume | 466 |
creator | Young, L. Kanter, E. P. Krässig, B. Li, Y. March, A. M. Pratt, S. T. Santra, R. Southworth, S. H. Rohringer, N. DiMauro, L. F. Doumy, G. Roedig, C. A. Berrah, N. Fang, L. Hoener, M. Bucksbaum, P. H. Cryan, J. P. Ghimire, S. Glownia, J. M. Reis, D. A. Bozek, J. D. Bostedt, C. Messerschmidt, M. |
description | An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10
18
W cm
−2
, 1.5–0.6 nm, ∼10
5
X-ray photons per Å
2
). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse—by sequentially ejecting electrons—to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces ‘hollow’ atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.
First strike from the LCLS
The world's first X-ray free-electron laser — the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in Menlo Park, California — came online last year. It opened a new era for studies at the atomic level, including the prospect of single-shot imaging of complex nano-objects such as biological molecules. The results of one of the first user experiments carried out at the LCLS are presented in this issue. The new facility produces ultrashort (femtosecond) pulses of high-intensity X-rays at a wavelength of less than 1.5 nm. The experiment examined the electronic response of free neon atoms to such radiation. During a single X-ray pulse, the atoms sequentially ejected all their ten electrons to produce fully stripped neon — 'hollow' atoms that are X-ray transparent. The authors explain the observations and underlying mechanisms of electron stripping using a straightforward model, which bodes well for further studies of interactions of the X-rays with more complex systems.
With the start-up of the first X-ray free-electron laser, a new era has begun in dynamical studies of atoms. Here the facility is used to study the fundamental nature of the electronic response in free neon atoms. During a sin |
doi_str_mv | 10.1038/nature09177 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_753660166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A230766084</galeid><sourcerecordid>A230766084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c675t-af32f34038b61d161e23e20a22c2564c1c343a0dd1591122a2982274054abaea3</originalsourceid><addsrcrecordid>eNqF0k1v1DAQBuAIgWgpnLij0AoBghR_xE5yY7WiUKkCCYrgZnmdyeIqsbe2I9F_zyy70C4KoBwsxY8nb8aTZQ8pOaaE16-cTmMA0tCqupXt07KSRSnr6na2TwirC1JzuZfdi_GCECJoVd7N9hgRjSSU72evT2BIPoLxrs2hB5OCd9bkAeLKuwi573Kd_BDz5POxT0EX1iVY73wtgr6K97M7ne4jPNiuB9nnkzfn83fF2Ye3p_PZWWFkJVKhO846XmLehaQtlRQYB0Y0Y4YJWRpqeMk1aVsqGkoZ06ypGatKIkq90KD5QfZ4U9fHZFU0NoH5hqkdRlZom7pB83RjVsFfjhCTGmw00PfagR-jqgSX-NtS_l9yLllNa4Hy2T8lxaJCCIyN9PAPeuHH4LArSuJNNbKuS0RHG7TUPSjrOo89NeuaasY4qTDgT1VMqCU4CLr3DjqLr3f84YQ3K3upbqLjCYRPC4M1k1Wf7xxAk-B7WuoxRnX66eOuffF3Ozv_Mn8_qU3wMQbo1CrYQYcrRYlaT7W6MdWoH20bOy4GaH_bX2OM4MkW6Gh03wXtjI3XjjUMR2_tXm5cxC23hHB9Q1Pf_QFXhgbB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>610396884</pqid></control><display><type>article</type><title>Femtosecond electronic response of atoms to ultra-intense X-rays</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Young, L. ; Kanter, E. P. ; Krässig, B. ; Li, Y. ; March, A. M. ; Pratt, S. T. ; Santra, R. ; Southworth, S. H. ; Rohringer, N. ; DiMauro, L. F. ; Doumy, G. ; Roedig, C. A. ; Berrah, N. ; Fang, L. ; Hoener, M. ; Bucksbaum, P. H. ; Cryan, J. P. ; Ghimire, S. ; Glownia, J. M. ; Reis, D. A. ; Bozek, J. D. ; Bostedt, C. ; Messerschmidt, M.</creator><creatorcontrib>Young, L. ; Kanter, E. P. ; Krässig, B. ; Li, Y. ; March, A. M. ; Pratt, S. T. ; Santra, R. ; Southworth, S. H. ; Rohringer, N. ; DiMauro, L. F. ; Doumy, G. ; Roedig, C. A. ; Berrah, N. ; Fang, L. ; Hoener, M. ; Bucksbaum, P. H. ; Cryan, J. P. ; Ghimire, S. ; Glownia, J. M. ; Reis, D. A. ; Bozek, J. D. ; Bostedt, C. ; Messerschmidt, M. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10
18
W cm
−2
, 1.5–0.6 nm, ∼10
5
X-ray photons per Å
2
). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse—by sequentially ejecting electrons—to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces ‘hollow’ atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.
First strike from the LCLS
The world's first X-ray free-electron laser — the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in Menlo Park, California — came online last year. It opened a new era for studies at the atomic level, including the prospect of single-shot imaging of complex nano-objects such as biological molecules. The results of one of the first user experiments carried out at the LCLS are presented in this issue. The new facility produces ultrashort (femtosecond) pulses of high-intensity X-rays at a wavelength of less than 1.5 nm. The experiment examined the electronic response of free neon atoms to such radiation. During a single X-ray pulse, the atoms sequentially ejected all their ten electrons to produce fully stripped neon — 'hollow' atoms that are X-ray transparent. The authors explain the observations and underlying mechanisms of electron stripping using a straightforward model, which bodes well for further studies of interactions of the X-rays with more complex systems.
With the start-up of the first X-ray free-electron laser, a new era has begun in dynamical studies of atoms. Here the facility is used to study the fundamental nature of the electronic response in free neon atoms. During a single X-ray pulse, they sequentially eject all their ten electrons to produce fully stripped neon. The authors explain this electron-stripping in a straightforward model, auguring favourably for further studies of interactions of X-rays with more complex systems.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature09177</identifier><identifier>PMID: 20596013</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1001 ; 639/766/25 ; 639/766/36 ; 639/766/400/1106 ; ABSORPTION ; Atomic and molecular physics ; Atomic properties and interactions with photons ; ATOMS ; Auger effect and inner-shell excitation or ionization ; Coherent light ; Condensed matter ; Electromagnetism; electron and ion optics ; Electronics ; ELECTRONS ; Exact sciences and technology ; Femtosecond ; Fluence ; FREE ELECTRON LASERS ; Fundamental areas of phenomenology (including applications) ; Humanities and Social Sciences ; Infrared radiation ; LIGHT SOURCES ; LINEAR ACCELERATORS ; Monte Carlo simulation ; multidisciplinary ; NEON ; Nonlinear optics ; Optics ; PARTICLE ACCELERATORS ; Photon interactions with atoms ; PHOTONS ; Physics ; Properties ; RADIATIONS ; Science ; Science (multidisciplinary) ; START-UP ; Studies ; TARGETS ; Ultrafast processes; optical pulse generation and pulse compression ; VACANCIES ; X-ray beams and x-ray optics ; X-rays</subject><ispartof>Nature, 2010-07, Vol.466 (7302), p.56-61</ispartof><rights>Springer Nature Limited 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c675t-af32f34038b61d161e23e20a22c2564c1c343a0dd1591122a2982274054abaea3</citedby><cites>FETCH-LOGICAL-c675t-af32f34038b61d161e23e20a22c2564c1c343a0dd1591122a2982274054abaea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature09177$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature09177$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22924033$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20596013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/982989$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, L.</creatorcontrib><creatorcontrib>Kanter, E. P.</creatorcontrib><creatorcontrib>Krässig, B.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>March, A. M.</creatorcontrib><creatorcontrib>Pratt, S. T.</creatorcontrib><creatorcontrib>Santra, R.</creatorcontrib><creatorcontrib>Southworth, S. H.</creatorcontrib><creatorcontrib>Rohringer, N.</creatorcontrib><creatorcontrib>DiMauro, L. F.</creatorcontrib><creatorcontrib>Doumy, G.</creatorcontrib><creatorcontrib>Roedig, C. A.</creatorcontrib><creatorcontrib>Berrah, N.</creatorcontrib><creatorcontrib>Fang, L.</creatorcontrib><creatorcontrib>Hoener, M.</creatorcontrib><creatorcontrib>Bucksbaum, P. H.</creatorcontrib><creatorcontrib>Cryan, J. P.</creatorcontrib><creatorcontrib>Ghimire, S.</creatorcontrib><creatorcontrib>Glownia, J. M.</creatorcontrib><creatorcontrib>Reis, D. A.</creatorcontrib><creatorcontrib>Bozek, J. D.</creatorcontrib><creatorcontrib>Bostedt, C.</creatorcontrib><creatorcontrib>Messerschmidt, M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Femtosecond electronic response of atoms to ultra-intense X-rays</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10
18
W cm
−2
, 1.5–0.6 nm, ∼10
5
X-ray photons per Å
2
). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse—by sequentially ejecting electrons—to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces ‘hollow’ atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.
First strike from the LCLS
The world's first X-ray free-electron laser — the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in Menlo Park, California — came online last year. It opened a new era for studies at the atomic level, including the prospect of single-shot imaging of complex nano-objects such as biological molecules. The results of one of the first user experiments carried out at the LCLS are presented in this issue. The new facility produces ultrashort (femtosecond) pulses of high-intensity X-rays at a wavelength of less than 1.5 nm. The experiment examined the electronic response of free neon atoms to such radiation. During a single X-ray pulse, the atoms sequentially ejected all their ten electrons to produce fully stripped neon — 'hollow' atoms that are X-ray transparent. The authors explain the observations and underlying mechanisms of electron stripping using a straightforward model, which bodes well for further studies of interactions of the X-rays with more complex systems.
With the start-up of the first X-ray free-electron laser, a new era has begun in dynamical studies of atoms. Here the facility is used to study the fundamental nature of the electronic response in free neon atoms. During a single X-ray pulse, they sequentially eject all their ten electrons to produce fully stripped neon. The authors explain this electron-stripping in a straightforward model, auguring favourably for further studies of interactions of X-rays with more complex systems.</description><subject>639/766/119/1001</subject><subject>639/766/25</subject><subject>639/766/36</subject><subject>639/766/400/1106</subject><subject>ABSORPTION</subject><subject>Atomic and molecular physics</subject><subject>Atomic properties and interactions with photons</subject><subject>ATOMS</subject><subject>Auger effect and inner-shell excitation or ionization</subject><subject>Coherent light</subject><subject>Condensed matter</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Electronics</subject><subject>ELECTRONS</subject><subject>Exact sciences and technology</subject><subject>Femtosecond</subject><subject>Fluence</subject><subject>FREE ELECTRON LASERS</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Humanities and Social Sciences</subject><subject>Infrared radiation</subject><subject>LIGHT SOURCES</subject><subject>LINEAR ACCELERATORS</subject><subject>Monte Carlo simulation</subject><subject>multidisciplinary</subject><subject>NEON</subject><subject>Nonlinear optics</subject><subject>Optics</subject><subject>PARTICLE ACCELERATORS</subject><subject>Photon interactions with atoms</subject><subject>PHOTONS</subject><subject>Physics</subject><subject>Properties</subject><subject>RADIATIONS</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>START-UP</subject><subject>Studies</subject><subject>TARGETS</subject><subject>Ultrafast processes; optical pulse generation and pulse compression</subject><subject>VACANCIES</subject><subject>X-ray beams and x-ray optics</subject><subject>X-rays</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0k1v1DAQBuAIgWgpnLij0AoBghR_xE5yY7WiUKkCCYrgZnmdyeIqsbe2I9F_zyy70C4KoBwsxY8nb8aTZQ8pOaaE16-cTmMA0tCqupXt07KSRSnr6na2TwirC1JzuZfdi_GCECJoVd7N9hgRjSSU72evT2BIPoLxrs2hB5OCd9bkAeLKuwi573Kd_BDz5POxT0EX1iVY73wtgr6K97M7ne4jPNiuB9nnkzfn83fF2Ye3p_PZWWFkJVKhO846XmLehaQtlRQYB0Y0Y4YJWRpqeMk1aVsqGkoZ06ypGatKIkq90KD5QfZ4U9fHZFU0NoH5hqkdRlZom7pB83RjVsFfjhCTGmw00PfagR-jqgSX-NtS_l9yLllNa4Hy2T8lxaJCCIyN9PAPeuHH4LArSuJNNbKuS0RHG7TUPSjrOo89NeuaasY4qTDgT1VMqCU4CLr3DjqLr3f84YQ3K3upbqLjCYRPC4M1k1Wf7xxAk-B7WuoxRnX66eOuffF3Ozv_Mn8_qU3wMQbo1CrYQYcrRYlaT7W6MdWoH20bOy4GaH_bX2OM4MkW6Gh03wXtjI3XjjUMR2_tXm5cxC23hHB9Q1Pf_QFXhgbB</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Young, L.</creator><creator>Kanter, E. P.</creator><creator>Krässig, B.</creator><creator>Li, Y.</creator><creator>March, A. M.</creator><creator>Pratt, S. T.</creator><creator>Santra, R.</creator><creator>Southworth, S. H.</creator><creator>Rohringer, N.</creator><creator>DiMauro, L. F.</creator><creator>Doumy, G.</creator><creator>Roedig, C. A.</creator><creator>Berrah, N.</creator><creator>Fang, L.</creator><creator>Hoener, M.</creator><creator>Bucksbaum, P. H.</creator><creator>Cryan, J. P.</creator><creator>Ghimire, S.</creator><creator>Glownia, J. M.</creator><creator>Reis, D. A.</creator><creator>Bozek, J. D.</creator><creator>Bostedt, C.</creator><creator>Messerschmidt, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100701</creationdate><title>Femtosecond electronic response of atoms to ultra-intense X-rays</title><author>Young, L. ; Kanter, E. P. ; Krässig, B. ; Li, Y. ; March, A. M. ; Pratt, S. T. ; Santra, R. ; Southworth, S. H. ; Rohringer, N. ; DiMauro, L. F. ; Doumy, G. ; Roedig, C. A. ; Berrah, N. ; Fang, L. ; Hoener, M. ; Bucksbaum, P. H. ; Cryan, J. P. ; Ghimire, S. ; Glownia, J. M. ; Reis, D. A. ; Bozek, J. D. ; Bostedt, C. ; Messerschmidt, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c675t-af32f34038b61d161e23e20a22c2564c1c343a0dd1591122a2982274054abaea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/766/119/1001</topic><topic>639/766/25</topic><topic>639/766/36</topic><topic>639/766/400/1106</topic><topic>ABSORPTION</topic><topic>Atomic and molecular physics</topic><topic>Atomic properties and interactions with photons</topic><topic>ATOMS</topic><topic>Auger effect and inner-shell excitation or ionization</topic><topic>Coherent light</topic><topic>Condensed matter</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Electronics</topic><topic>ELECTRONS</topic><topic>Exact sciences and technology</topic><topic>Femtosecond</topic><topic>Fluence</topic><topic>FREE ELECTRON LASERS</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Humanities and Social Sciences</topic><topic>Infrared radiation</topic><topic>LIGHT SOURCES</topic><topic>LINEAR ACCELERATORS</topic><topic>Monte Carlo simulation</topic><topic>multidisciplinary</topic><topic>NEON</topic><topic>Nonlinear optics</topic><topic>Optics</topic><topic>PARTICLE ACCELERATORS</topic><topic>Photon interactions with atoms</topic><topic>PHOTONS</topic><topic>Physics</topic><topic>Properties</topic><topic>RADIATIONS</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>START-UP</topic><topic>Studies</topic><topic>TARGETS</topic><topic>Ultrafast processes; optical pulse generation and pulse compression</topic><topic>VACANCIES</topic><topic>X-ray beams and x-ray optics</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, L.</creatorcontrib><creatorcontrib>Kanter, E. P.</creatorcontrib><creatorcontrib>Krässig, B.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>March, A. M.</creatorcontrib><creatorcontrib>Pratt, S. T.</creatorcontrib><creatorcontrib>Santra, R.</creatorcontrib><creatorcontrib>Southworth, S. H.</creatorcontrib><creatorcontrib>Rohringer, N.</creatorcontrib><creatorcontrib>DiMauro, L. F.</creatorcontrib><creatorcontrib>Doumy, G.</creatorcontrib><creatorcontrib>Roedig, C. A.</creatorcontrib><creatorcontrib>Berrah, N.</creatorcontrib><creatorcontrib>Fang, L.</creatorcontrib><creatorcontrib>Hoener, M.</creatorcontrib><creatorcontrib>Bucksbaum, P. H.</creatorcontrib><creatorcontrib>Cryan, J. P.</creatorcontrib><creatorcontrib>Ghimire, S.</creatorcontrib><creatorcontrib>Glownia, J. M.</creatorcontrib><creatorcontrib>Reis, D. A.</creatorcontrib><creatorcontrib>Bozek, J. D.</creatorcontrib><creatorcontrib>Bostedt, C.</creatorcontrib><creatorcontrib>Messerschmidt, M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, L.</au><au>Kanter, E. P.</au><au>Krässig, B.</au><au>Li, Y.</au><au>March, A. M.</au><au>Pratt, S. T.</au><au>Santra, R.</au><au>Southworth, S. H.</au><au>Rohringer, N.</au><au>DiMauro, L. F.</au><au>Doumy, G.</au><au>Roedig, C. A.</au><au>Berrah, N.</au><au>Fang, L.</au><au>Hoener, M.</au><au>Bucksbaum, P. H.</au><au>Cryan, J. P.</au><au>Ghimire, S.</au><au>Glownia, J. M.</au><au>Reis, D. A.</au><au>Bozek, J. D.</au><au>Bostedt, C.</au><au>Messerschmidt, M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtosecond electronic response of atoms to ultra-intense X-rays</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>466</volume><issue>7302</issue><spage>56</spage><epage>61</epage><pages>56-61</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10
18
W cm
−2
, 1.5–0.6 nm, ∼10
5
X-ray photons per Å
2
). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse—by sequentially ejecting electrons—to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces ‘hollow’ atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.
First strike from the LCLS
The world's first X-ray free-electron laser — the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in Menlo Park, California — came online last year. It opened a new era for studies at the atomic level, including the prospect of single-shot imaging of complex nano-objects such as biological molecules. The results of one of the first user experiments carried out at the LCLS are presented in this issue. The new facility produces ultrashort (femtosecond) pulses of high-intensity X-rays at a wavelength of less than 1.5 nm. The experiment examined the electronic response of free neon atoms to such radiation. During a single X-ray pulse, the atoms sequentially ejected all their ten electrons to produce fully stripped neon — 'hollow' atoms that are X-ray transparent. The authors explain the observations and underlying mechanisms of electron stripping using a straightforward model, which bodes well for further studies of interactions of the X-rays with more complex systems.
With the start-up of the first X-ray free-electron laser, a new era has begun in dynamical studies of atoms. Here the facility is used to study the fundamental nature of the electronic response in free neon atoms. During a single X-ray pulse, they sequentially eject all their ten electrons to produce fully stripped neon. The authors explain this electron-stripping in a straightforward model, auguring favourably for further studies of interactions of X-rays with more complex systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20596013</pmid><doi>10.1038/nature09177</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2010-07, Vol.466 (7302), p.56-61 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_753660166 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/766/119/1001 639/766/25 639/766/36 639/766/400/1106 ABSORPTION Atomic and molecular physics Atomic properties and interactions with photons ATOMS Auger effect and inner-shell excitation or ionization Coherent light Condensed matter Electromagnetism electron and ion optics Electronics ELECTRONS Exact sciences and technology Femtosecond Fluence FREE ELECTRON LASERS Fundamental areas of phenomenology (including applications) Humanities and Social Sciences Infrared radiation LIGHT SOURCES LINEAR ACCELERATORS Monte Carlo simulation multidisciplinary NEON Nonlinear optics Optics PARTICLE ACCELERATORS Photon interactions with atoms PHOTONS Physics Properties RADIATIONS Science Science (multidisciplinary) START-UP Studies TARGETS Ultrafast processes optical pulse generation and pulse compression VACANCIES X-ray beams and x-ray optics X-rays |
title | Femtosecond electronic response of atoms to ultra-intense X-rays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtosecond%20electronic%20response%20of%20atoms%20to%20ultra-intense%20X-rays&rft.jtitle=Nature&rft.au=Young,%20L.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2010-07-01&rft.volume=466&rft.issue=7302&rft.spage=56&rft.epage=61&rft.pages=56-61&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature09177&rft_dat=%3Cgale_osti_%3EA230766084%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=610396884&rft_id=info:pmid/20596013&rft_galeid=A230766084&rfr_iscdi=true |