Chemical sensing and imaging with pulsed terahertz radiation
Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectr...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2010-06, Vol.397 (3), p.1009-1017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | 3 |
container_start_page | 1009 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 397 |
creator | Walther, Markus Fischer, Bernd M Ortner, Alex Bitzer, Andreas Thoman, Andreas Helm, Hanspeter |
description | Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectrometers for this interesting part of the electromagnetic spectrum, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Although early proof-of-principle demonstrations have shown the great potential of terahertz spectroscopy for sensing and imaging, the technology still often lacks the required sensitivity and suffers from its intrinsically poor spatial resolution. In this review we discuss the current potential of terahertz pulse spectroscopy and highlight recent technological advances geared towards both enhancing spectral sensitivity and increasing spatial resolution. [graphic removed] |
doi_str_mv | 10.1007/s00216-010-3672-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_753653233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A403166336</galeid><sourcerecordid>A403166336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-f2bf2bac5b2808d89e8fd51adbd104521c9ea71af8737338550f33a6e6b38a5f3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EomXhB3CBXFC5pMx4Yscr9VKtyodUiQP0bE0SO-tqN1nsRAh-PV5lKbciW_LI87wz9rxCvEa4RID6QwKQqEtAKEnXssQn4hw1mlJqBU8f4kqeiRcp3QOgMqifizMJZLQx5lxcbbZuH1reFckNKQx9wUNXhD33x_hnmLbFYd4l1xWTi7x1cfpdRO4CT2EcXopnnnPy1elcibuPN983n8vbr5--bK5vy1YBTqWXTd7cqkYaMJ1ZO-M7hdw1HUKlJLZrxzWyNzXVREYp8ESsnW7IsPK0EhdL3UMcf8wuTXYfUut2Ox7cOCdbK9KKJNH_SSKFoFSVyfePklhXlda6qtcZvVzQnnfOhsGPU-Q2r-44unFwPuT76woItSbSWYCLoI1jStF5e4h5pPGXRbBH5-zinM3O2aNzFrPmzek9c7N33YPir1UZeHcCOGW_fOShDekfJw0pnemVkAuXcmroXbT34xyH7M-j3d8uIs-j5T7mwnffJCABmkrK_Ks_KuK3fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744666479</pqid></control><display><type>article</type><title>Chemical sensing and imaging with pulsed terahertz radiation</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Walther, Markus ; Fischer, Bernd M ; Ortner, Alex ; Bitzer, Andreas ; Thoman, Andreas ; Helm, Hanspeter</creator><creatorcontrib>Walther, Markus ; Fischer, Bernd M ; Ortner, Alex ; Bitzer, Andreas ; Thoman, Andreas ; Helm, Hanspeter</creatorcontrib><description>Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectrometers for this interesting part of the electromagnetic spectrum, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Although early proof-of-principle demonstrations have shown the great potential of terahertz spectroscopy for sensing and imaging, the technology still often lacks the required sensitivity and suffers from its intrinsically poor spatial resolution. In this review we discuss the current potential of terahertz pulse spectroscopy and highlight recent technological advances geared towards both enhancing spectral sensitivity and increasing spatial resolution. [graphic removed]</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-010-3672-1</identifier><identifier>PMID: 20386888</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Analysis ; Analytical Chemistry ; Animals ; Biochemistry ; Characterization and Evaluation of Materials ; Chemical detectors ; Chemistry ; Chemistry and Materials Science ; Chemistry Techniques, Analytical - instrumentation ; Chemistry Techniques, Analytical - methods ; Design and construction ; Detection ; Equipment and supplies ; Equipment Design ; Exact sciences and technology ; Food Science ; Humans ; Imaging ; Imaging systems ; Lab-on-chip ; Laboratory Medicine ; Laser pulses, Ultrashort ; Mathematical analysis ; Methods ; Microscope and microscopy ; Microscopy - instrumentation ; Microscopy - methods ; Models, Molecular ; Monitoring/Environmental Analysis ; Properties ; Pulsed radiation ; Review ; Terahertz imaging ; Terahertz Imaging - instrumentation ; Terahertz Imaging - methods ; Terahertz Radiation ; Terahertz spectroscopy ; Time-domain analysis ; Waveguides</subject><ispartof>Analytical and bioanalytical chemistry, 2010-06, Vol.397 (3), p.1009-1017</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-f2bf2bac5b2808d89e8fd51adbd104521c9ea71af8737338550f33a6e6b38a5f3</citedby><cites>FETCH-LOGICAL-c501t-f2bf2bac5b2808d89e8fd51adbd104521c9ea71af8737338550f33a6e6b38a5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-010-3672-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-010-3672-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22835620$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20386888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walther, Markus</creatorcontrib><creatorcontrib>Fischer, Bernd M</creatorcontrib><creatorcontrib>Ortner, Alex</creatorcontrib><creatorcontrib>Bitzer, Andreas</creatorcontrib><creatorcontrib>Thoman, Andreas</creatorcontrib><creatorcontrib>Helm, Hanspeter</creatorcontrib><title>Chemical sensing and imaging with pulsed terahertz radiation</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectrometers for this interesting part of the electromagnetic spectrum, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Although early proof-of-principle demonstrations have shown the great potential of terahertz spectroscopy for sensing and imaging, the technology still often lacks the required sensitivity and suffers from its intrinsically poor spatial resolution. In this review we discuss the current potential of terahertz pulse spectroscopy and highlight recent technological advances geared towards both enhancing spectral sensitivity and increasing spatial resolution. [graphic removed]</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical detectors</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry Techniques, Analytical - instrumentation</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Design and construction</subject><subject>Detection</subject><subject>Equipment and supplies</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Food Science</subject><subject>Humans</subject><subject>Imaging</subject><subject>Imaging systems</subject><subject>Lab-on-chip</subject><subject>Laboratory Medicine</subject><subject>Laser pulses, Ultrashort</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Microscope and microscopy</subject><subject>Microscopy - instrumentation</subject><subject>Microscopy - methods</subject><subject>Models, Molecular</subject><subject>Monitoring/Environmental Analysis</subject><subject>Properties</subject><subject>Pulsed radiation</subject><subject>Review</subject><subject>Terahertz imaging</subject><subject>Terahertz Imaging - instrumentation</subject><subject>Terahertz Imaging - methods</subject><subject>Terahertz Radiation</subject><subject>Terahertz spectroscopy</subject><subject>Time-domain analysis</subject><subject>Waveguides</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EomXhB3CBXFC5pMx4Yscr9VKtyodUiQP0bE0SO-tqN1nsRAh-PV5lKbciW_LI87wz9rxCvEa4RID6QwKQqEtAKEnXssQn4hw1mlJqBU8f4kqeiRcp3QOgMqifizMJZLQx5lxcbbZuH1reFckNKQx9wUNXhD33x_hnmLbFYd4l1xWTi7x1cfpdRO4CT2EcXopnnnPy1elcibuPN983n8vbr5--bK5vy1YBTqWXTd7cqkYaMJ1ZO-M7hdw1HUKlJLZrxzWyNzXVREYp8ESsnW7IsPK0EhdL3UMcf8wuTXYfUut2Ox7cOCdbK9KKJNH_SSKFoFSVyfePklhXlda6qtcZvVzQnnfOhsGPU-Q2r-44unFwPuT76woItSbSWYCLoI1jStF5e4h5pPGXRbBH5-zinM3O2aNzFrPmzek9c7N33YPir1UZeHcCOGW_fOShDekfJw0pnemVkAuXcmroXbT34xyH7M-j3d8uIs-j5T7mwnffJCABmkrK_Ks_KuK3fw</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Walther, Markus</creator><creator>Fischer, Bernd M</creator><creator>Ortner, Alex</creator><creator>Bitzer, Andreas</creator><creator>Thoman, Andreas</creator><creator>Helm, Hanspeter</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20100601</creationdate><title>Chemical sensing and imaging with pulsed terahertz radiation</title><author>Walther, Markus ; Fischer, Bernd M ; Ortner, Alex ; Bitzer, Andreas ; Thoman, Andreas ; Helm, Hanspeter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-f2bf2bac5b2808d89e8fd51adbd104521c9ea71af8737338550f33a6e6b38a5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical detectors</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry Techniques, Analytical - instrumentation</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Design and construction</topic><topic>Detection</topic><topic>Equipment and supplies</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Food Science</topic><topic>Humans</topic><topic>Imaging</topic><topic>Imaging systems</topic><topic>Lab-on-chip</topic><topic>Laboratory Medicine</topic><topic>Laser pulses, Ultrashort</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Microscope and microscopy</topic><topic>Microscopy - instrumentation</topic><topic>Microscopy - methods</topic><topic>Models, Molecular</topic><topic>Monitoring/Environmental Analysis</topic><topic>Properties</topic><topic>Pulsed radiation</topic><topic>Review</topic><topic>Terahertz imaging</topic><topic>Terahertz Imaging - instrumentation</topic><topic>Terahertz Imaging - methods</topic><topic>Terahertz Radiation</topic><topic>Terahertz spectroscopy</topic><topic>Time-domain analysis</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walther, Markus</creatorcontrib><creatorcontrib>Fischer, Bernd M</creatorcontrib><creatorcontrib>Ortner, Alex</creatorcontrib><creatorcontrib>Bitzer, Andreas</creatorcontrib><creatorcontrib>Thoman, Andreas</creatorcontrib><creatorcontrib>Helm, Hanspeter</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walther, Markus</au><au>Fischer, Bernd M</au><au>Ortner, Alex</au><au>Bitzer, Andreas</au><au>Thoman, Andreas</au><au>Helm, Hanspeter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical sensing and imaging with pulsed terahertz radiation</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>397</volume><issue>3</issue><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectrometers for this interesting part of the electromagnetic spectrum, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Although early proof-of-principle demonstrations have shown the great potential of terahertz spectroscopy for sensing and imaging, the technology still often lacks the required sensitivity and suffers from its intrinsically poor spatial resolution. In this review we discuss the current potential of terahertz pulse spectroscopy and highlight recent technological advances geared towards both enhancing spectral sensitivity and increasing spatial resolution. [graphic removed]</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20386888</pmid><doi>10.1007/s00216-010-3672-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2010-06, Vol.397 (3), p.1009-1017 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_753653233 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Analysis Analytical Chemistry Animals Biochemistry Characterization and Evaluation of Materials Chemical detectors Chemistry Chemistry and Materials Science Chemistry Techniques, Analytical - instrumentation Chemistry Techniques, Analytical - methods Design and construction Detection Equipment and supplies Equipment Design Exact sciences and technology Food Science Humans Imaging Imaging systems Lab-on-chip Laboratory Medicine Laser pulses, Ultrashort Mathematical analysis Methods Microscope and microscopy Microscopy - instrumentation Microscopy - methods Models, Molecular Monitoring/Environmental Analysis Properties Pulsed radiation Review Terahertz imaging Terahertz Imaging - instrumentation Terahertz Imaging - methods Terahertz Radiation Terahertz spectroscopy Time-domain analysis Waveguides |
title | Chemical sensing and imaging with pulsed terahertz radiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20sensing%20and%20imaging%20with%20pulsed%20terahertz%20radiation&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Walther,%20Markus&rft.date=2010-06-01&rft.volume=397&rft.issue=3&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-010-3672-1&rft_dat=%3Cgale_proqu%3EA403166336%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744666479&rft_id=info:pmid/20386888&rft_galeid=A403166336&rfr_iscdi=true |