Chemical sensing and imaging with pulsed terahertz radiation

Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2010-06, Vol.397 (3), p.1009-1017
Hauptverfasser: Walther, Markus, Fischer, Bernd M, Ortner, Alex, Bitzer, Andreas, Thoman, Andreas, Helm, Hanspeter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1017
container_issue 3
container_start_page 1009
container_title Analytical and bioanalytical chemistry
container_volume 397
creator Walther, Markus
Fischer, Bernd M
Ortner, Alex
Bitzer, Andreas
Thoman, Andreas
Helm, Hanspeter
description Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectrometers for this interesting part of the electromagnetic spectrum, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Although early proof-of-principle demonstrations have shown the great potential of terahertz spectroscopy for sensing and imaging, the technology still often lacks the required sensitivity and suffers from its intrinsically poor spatial resolution. In this review we discuss the current potential of terahertz pulse spectroscopy and highlight recent technological advances geared towards both enhancing spectral sensitivity and increasing spatial resolution. [graphic removed]
doi_str_mv 10.1007/s00216-010-3672-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_753653233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A403166336</galeid><sourcerecordid>A403166336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-f2bf2bac5b2808d89e8fd51adbd104521c9ea71af8737338550f33a6e6b38a5f3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EomXhB3CBXFC5pMx4Yscr9VKtyodUiQP0bE0SO-tqN1nsRAh-PV5lKbciW_LI87wz9rxCvEa4RID6QwKQqEtAKEnXssQn4hw1mlJqBU8f4kqeiRcp3QOgMqifizMJZLQx5lxcbbZuH1reFckNKQx9wUNXhD33x_hnmLbFYd4l1xWTi7x1cfpdRO4CT2EcXopnnnPy1elcibuPN983n8vbr5--bK5vy1YBTqWXTd7cqkYaMJ1ZO-M7hdw1HUKlJLZrxzWyNzXVREYp8ESsnW7IsPK0EhdL3UMcf8wuTXYfUut2Ox7cOCdbK9KKJNH_SSKFoFSVyfePklhXlda6qtcZvVzQnnfOhsGPU-Q2r-44unFwPuT76woItSbSWYCLoI1jStF5e4h5pPGXRbBH5-zinM3O2aNzFrPmzek9c7N33YPir1UZeHcCOGW_fOShDekfJw0pnemVkAuXcmroXbT34xyH7M-j3d8uIs-j5T7mwnffJCABmkrK_Ks_KuK3fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744666479</pqid></control><display><type>article</type><title>Chemical sensing and imaging with pulsed terahertz radiation</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Walther, Markus ; Fischer, Bernd M ; Ortner, Alex ; Bitzer, Andreas ; Thoman, Andreas ; Helm, Hanspeter</creator><creatorcontrib>Walther, Markus ; Fischer, Bernd M ; Ortner, Alex ; Bitzer, Andreas ; Thoman, Andreas ; Helm, Hanspeter</creatorcontrib><description>Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectrometers for this interesting part of the electromagnetic spectrum, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Although early proof-of-principle demonstrations have shown the great potential of terahertz spectroscopy for sensing and imaging, the technology still often lacks the required sensitivity and suffers from its intrinsically poor spatial resolution. In this review we discuss the current potential of terahertz pulse spectroscopy and highlight recent technological advances geared towards both enhancing spectral sensitivity and increasing spatial resolution. [graphic removed]</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-010-3672-1</identifier><identifier>PMID: 20386888</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Analysis ; Analytical Chemistry ; Animals ; Biochemistry ; Characterization and Evaluation of Materials ; Chemical detectors ; Chemistry ; Chemistry and Materials Science ; Chemistry Techniques, Analytical - instrumentation ; Chemistry Techniques, Analytical - methods ; Design and construction ; Detection ; Equipment and supplies ; Equipment Design ; Exact sciences and technology ; Food Science ; Humans ; Imaging ; Imaging systems ; Lab-on-chip ; Laboratory Medicine ; Laser pulses, Ultrashort ; Mathematical analysis ; Methods ; Microscope and microscopy ; Microscopy - instrumentation ; Microscopy - methods ; Models, Molecular ; Monitoring/Environmental Analysis ; Properties ; Pulsed radiation ; Review ; Terahertz imaging ; Terahertz Imaging - instrumentation ; Terahertz Imaging - methods ; Terahertz Radiation ; Terahertz spectroscopy ; Time-domain analysis ; Waveguides</subject><ispartof>Analytical and bioanalytical chemistry, 2010-06, Vol.397 (3), p.1009-1017</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-f2bf2bac5b2808d89e8fd51adbd104521c9ea71af8737338550f33a6e6b38a5f3</citedby><cites>FETCH-LOGICAL-c501t-f2bf2bac5b2808d89e8fd51adbd104521c9ea71af8737338550f33a6e6b38a5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-010-3672-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-010-3672-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22835620$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20386888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walther, Markus</creatorcontrib><creatorcontrib>Fischer, Bernd M</creatorcontrib><creatorcontrib>Ortner, Alex</creatorcontrib><creatorcontrib>Bitzer, Andreas</creatorcontrib><creatorcontrib>Thoman, Andreas</creatorcontrib><creatorcontrib>Helm, Hanspeter</creatorcontrib><title>Chemical sensing and imaging with pulsed terahertz radiation</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectrometers for this interesting part of the electromagnetic spectrum, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Although early proof-of-principle demonstrations have shown the great potential of terahertz spectroscopy for sensing and imaging, the technology still often lacks the required sensitivity and suffers from its intrinsically poor spatial resolution. In this review we discuss the current potential of terahertz pulse spectroscopy and highlight recent technological advances geared towards both enhancing spectral sensitivity and increasing spatial resolution. [graphic removed]</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical detectors</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry Techniques, Analytical - instrumentation</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Design and construction</subject><subject>Detection</subject><subject>Equipment and supplies</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Food Science</subject><subject>Humans</subject><subject>Imaging</subject><subject>Imaging systems</subject><subject>Lab-on-chip</subject><subject>Laboratory Medicine</subject><subject>Laser pulses, Ultrashort</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Microscope and microscopy</subject><subject>Microscopy - instrumentation</subject><subject>Microscopy - methods</subject><subject>Models, Molecular</subject><subject>Monitoring/Environmental Analysis</subject><subject>Properties</subject><subject>Pulsed radiation</subject><subject>Review</subject><subject>Terahertz imaging</subject><subject>Terahertz Imaging - instrumentation</subject><subject>Terahertz Imaging - methods</subject><subject>Terahertz Radiation</subject><subject>Terahertz spectroscopy</subject><subject>Time-domain analysis</subject><subject>Waveguides</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EomXhB3CBXFC5pMx4Yscr9VKtyodUiQP0bE0SO-tqN1nsRAh-PV5lKbciW_LI87wz9rxCvEa4RID6QwKQqEtAKEnXssQn4hw1mlJqBU8f4kqeiRcp3QOgMqifizMJZLQx5lxcbbZuH1reFckNKQx9wUNXhD33x_hnmLbFYd4l1xWTi7x1cfpdRO4CT2EcXopnnnPy1elcibuPN983n8vbr5--bK5vy1YBTqWXTd7cqkYaMJ1ZO-M7hdw1HUKlJLZrxzWyNzXVREYp8ESsnW7IsPK0EhdL3UMcf8wuTXYfUut2Ox7cOCdbK9KKJNH_SSKFoFSVyfePklhXlda6qtcZvVzQnnfOhsGPU-Q2r-44unFwPuT76woItSbSWYCLoI1jStF5e4h5pPGXRbBH5-zinM3O2aNzFrPmzek9c7N33YPir1UZeHcCOGW_fOShDekfJw0pnemVkAuXcmroXbT34xyH7M-j3d8uIs-j5T7mwnffJCABmkrK_Ks_KuK3fw</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Walther, Markus</creator><creator>Fischer, Bernd M</creator><creator>Ortner, Alex</creator><creator>Bitzer, Andreas</creator><creator>Thoman, Andreas</creator><creator>Helm, Hanspeter</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20100601</creationdate><title>Chemical sensing and imaging with pulsed terahertz radiation</title><author>Walther, Markus ; Fischer, Bernd M ; Ortner, Alex ; Bitzer, Andreas ; Thoman, Andreas ; Helm, Hanspeter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-f2bf2bac5b2808d89e8fd51adbd104521c9ea71af8737338550f33a6e6b38a5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical detectors</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry Techniques, Analytical - instrumentation</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Design and construction</topic><topic>Detection</topic><topic>Equipment and supplies</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Food Science</topic><topic>Humans</topic><topic>Imaging</topic><topic>Imaging systems</topic><topic>Lab-on-chip</topic><topic>Laboratory Medicine</topic><topic>Laser pulses, Ultrashort</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Microscope and microscopy</topic><topic>Microscopy - instrumentation</topic><topic>Microscopy - methods</topic><topic>Models, Molecular</topic><topic>Monitoring/Environmental Analysis</topic><topic>Properties</topic><topic>Pulsed radiation</topic><topic>Review</topic><topic>Terahertz imaging</topic><topic>Terahertz Imaging - instrumentation</topic><topic>Terahertz Imaging - methods</topic><topic>Terahertz Radiation</topic><topic>Terahertz spectroscopy</topic><topic>Time-domain analysis</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walther, Markus</creatorcontrib><creatorcontrib>Fischer, Bernd M</creatorcontrib><creatorcontrib>Ortner, Alex</creatorcontrib><creatorcontrib>Bitzer, Andreas</creatorcontrib><creatorcontrib>Thoman, Andreas</creatorcontrib><creatorcontrib>Helm, Hanspeter</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walther, Markus</au><au>Fischer, Bernd M</au><au>Ortner, Alex</au><au>Bitzer, Andreas</au><au>Thoman, Andreas</au><au>Helm, Hanspeter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical sensing and imaging with pulsed terahertz radiation</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>397</volume><issue>3</issue><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Over the past decade, terahertz spectroscopy has evolved into a versatile tool for chemically selective sensing and imaging applications. In particular, the potential to coherently generate and detect short, and hence, broadband terahertz pulses led to the development of efficient and compact spectrometers for this interesting part of the electromagnetic spectrum, where common packaging materials are transparent and many chemical compounds show characteristic absorptions. Although early proof-of-principle demonstrations have shown the great potential of terahertz spectroscopy for sensing and imaging, the technology still often lacks the required sensitivity and suffers from its intrinsically poor spatial resolution. In this review we discuss the current potential of terahertz pulse spectroscopy and highlight recent technological advances geared towards both enhancing spectral sensitivity and increasing spatial resolution. [graphic removed]</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20386888</pmid><doi>10.1007/s00216-010-3672-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2010-06, Vol.397 (3), p.1009-1017
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_753653233
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Analysis
Analytical Chemistry
Animals
Biochemistry
Characterization and Evaluation of Materials
Chemical detectors
Chemistry
Chemistry and Materials Science
Chemistry Techniques, Analytical - instrumentation
Chemistry Techniques, Analytical - methods
Design and construction
Detection
Equipment and supplies
Equipment Design
Exact sciences and technology
Food Science
Humans
Imaging
Imaging systems
Lab-on-chip
Laboratory Medicine
Laser pulses, Ultrashort
Mathematical analysis
Methods
Microscope and microscopy
Microscopy - instrumentation
Microscopy - methods
Models, Molecular
Monitoring/Environmental Analysis
Properties
Pulsed radiation
Review
Terahertz imaging
Terahertz Imaging - instrumentation
Terahertz Imaging - methods
Terahertz Radiation
Terahertz spectroscopy
Time-domain analysis
Waveguides
title Chemical sensing and imaging with pulsed terahertz radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20sensing%20and%20imaging%20with%20pulsed%20terahertz%20radiation&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Walther,%20Markus&rft.date=2010-06-01&rft.volume=397&rft.issue=3&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-010-3672-1&rft_dat=%3Cgale_proqu%3EA403166336%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744666479&rft_id=info:pmid/20386888&rft_galeid=A403166336&rfr_iscdi=true