Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods

Graphite has been used as the negative electrode in lithium‐ion batteries for more than a decade. To attain higher energy density batteries, silicon and tin, which can alloy reversibly with lithium, have been considered as a replacement for graphite. However, the volume expansion of these metal elem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2010-05, Vol.34 (6), p.535-555
Hauptverfasser: Todd, A. D. W., Ferguson, P. P., Fleischauer, M. D., Dahn, J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 555
container_issue 6
container_start_page 535
container_title International journal of energy research
container_volume 34
creator Todd, A. D. W.
Ferguson, P. P.
Fleischauer, M. D.
Dahn, J. R.
description Graphite has been used as the negative electrode in lithium‐ion batteries for more than a decade. To attain higher energy density batteries, silicon and tin, which can alloy reversibly with lithium, have been considered as a replacement for graphite. However, the volume expansion of these metal elements upon lithiation can result in poor capacity retention. Alloying the active metal element with an inactive material can limit the overall volume expansion and improve cycle life. This paper presents a summary of tin‐based materials as negative electrodes. After reviewing attempts to improve and understand the electrochemical behaviour of metallic tin and its oxides, the focus turns to alloys of tin with a transition metal (TM) and, optionally, carbon. To do so, a combinatorial sputtering technique was used to simultaneously prepare many different compositions of Sn‐TM‐based materials. The structural and electrochemical results of these samples are presented and they show that cobalt is the preferred TM to give optimal performance. Finally, a comparison of a Sn–Co–C negative electrode material prepared by a rapid quenching method (sputtering) with a material prepared by an economical milling method (mechanical attrition) is presented and discussed. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/er.1669
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753652259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753652259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4679-72d2b01ef08fbef8f4f8ce0254d12b257df28258e4c0b557f247a306e1b59d7d3</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpiFfwxoBSbCeOEzZUlQIqIBCIisVynGNqSOJgh0vfnlStYGI6w_-diw5Ch5SMKCHsBPyIpmm-hQaU5HlEaTLfRgMSp3GUEzHfRXshvBLSZ1QMUPtgm6hQAUpcqw68VVXAKuAGXlRnPwFDBbrzroSAjfN4ZiPrGlyoboUhnOKxqwvbqM6terFqW--UXvRcNf1M0AvVWN0nNXQLV4Z9tGP6HXCwqUP0eD55GF9Es9vp5fhsFukkFXkkWMkKQsGQzBRgMpOYTANhPCkpKxgXpWEZ4xkkmhScC8MSoWKSAi14XooyHqKj9dz-nvcPCJ2sbdBQVaoB9xGk4HHKGeP5n9TeheDByNbbWvmlpESuXirBy9VLe3m8ll-2guV_TE7uNzpaaxs6-P7Vyr_JVMSCy6ebqUzZ9fPdXXIln-IfR_6Hrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753652259</pqid></control><display><type>article</type><title>Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Todd, A. D. W. ; Ferguson, P. P. ; Fleischauer, M. D. ; Dahn, J. R.</creator><creatorcontrib>Todd, A. D. W. ; Ferguson, P. P. ; Fleischauer, M. D. ; Dahn, J. R.</creatorcontrib><description>Graphite has been used as the negative electrode in lithium‐ion batteries for more than a decade. To attain higher energy density batteries, silicon and tin, which can alloy reversibly with lithium, have been considered as a replacement for graphite. However, the volume expansion of these metal elements upon lithiation can result in poor capacity retention. Alloying the active metal element with an inactive material can limit the overall volume expansion and improve cycle life. This paper presents a summary of tin‐based materials as negative electrodes. After reviewing attempts to improve and understand the electrochemical behaviour of metallic tin and its oxides, the focus turns to alloys of tin with a transition metal (TM) and, optionally, carbon. To do so, a combinatorial sputtering technique was used to simultaneously prepare many different compositions of Sn‐TM‐based materials. The structural and electrochemical results of these samples are presented and they show that cobalt is the preferred TM to give optimal performance. Finally, a comparison of a Sn–Co–C negative electrode material prepared by a rapid quenching method (sputtering) with a material prepared by an economical milling method (mechanical attrition) is presented and discussed. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.1669</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Alloying ; Alloying elements ; Batteries ; Combinatorial analysis ; combinatorial materials science ; Electric batteries ; Electrodes ; lithium ion battery ; mechanically alloying ; nanostructure ; negative electrode ; Sn-Co-C ; Sputtering ; Tin</subject><ispartof>International journal of energy research, 2010-05, Vol.34 (6), p.535-555</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4679-72d2b01ef08fbef8f4f8ce0254d12b257df28258e4c0b557f247a306e1b59d7d3</citedby><cites>FETCH-LOGICAL-c4679-72d2b01ef08fbef8f4f8ce0254d12b257df28258e4c0b557f247a306e1b59d7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.1669$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.1669$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Todd, A. D. W.</creatorcontrib><creatorcontrib>Ferguson, P. P.</creatorcontrib><creatorcontrib>Fleischauer, M. D.</creatorcontrib><creatorcontrib>Dahn, J. R.</creatorcontrib><title>Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods</title><title>International journal of energy research</title><addtitle>Int. J. Energy Res</addtitle><description>Graphite has been used as the negative electrode in lithium‐ion batteries for more than a decade. To attain higher energy density batteries, silicon and tin, which can alloy reversibly with lithium, have been considered as a replacement for graphite. However, the volume expansion of these metal elements upon lithiation can result in poor capacity retention. Alloying the active metal element with an inactive material can limit the overall volume expansion and improve cycle life. This paper presents a summary of tin‐based materials as negative electrodes. After reviewing attempts to improve and understand the electrochemical behaviour of metallic tin and its oxides, the focus turns to alloys of tin with a transition metal (TM) and, optionally, carbon. To do so, a combinatorial sputtering technique was used to simultaneously prepare many different compositions of Sn‐TM‐based materials. The structural and electrochemical results of these samples are presented and they show that cobalt is the preferred TM to give optimal performance. Finally, a comparison of a Sn–Co–C negative electrode material prepared by a rapid quenching method (sputtering) with a material prepared by an economical milling method (mechanical attrition) is presented and discussed. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Alloying</subject><subject>Alloying elements</subject><subject>Batteries</subject><subject>Combinatorial analysis</subject><subject>combinatorial materials science</subject><subject>Electric batteries</subject><subject>Electrodes</subject><subject>lithium ion battery</subject><subject>mechanically alloying</subject><subject>nanostructure</subject><subject>negative electrode</subject><subject>Sn-Co-C</subject><subject>Sputtering</subject><subject>Tin</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpiFfwxoBSbCeOEzZUlQIqIBCIisVynGNqSOJgh0vfnlStYGI6w_-diw5Ch5SMKCHsBPyIpmm-hQaU5HlEaTLfRgMSp3GUEzHfRXshvBLSZ1QMUPtgm6hQAUpcqw68VVXAKuAGXlRnPwFDBbrzroSAjfN4ZiPrGlyoboUhnOKxqwvbqM6terFqW--UXvRcNf1M0AvVWN0nNXQLV4Z9tGP6HXCwqUP0eD55GF9Es9vp5fhsFukkFXkkWMkKQsGQzBRgMpOYTANhPCkpKxgXpWEZ4xkkmhScC8MSoWKSAi14XooyHqKj9dz-nvcPCJ2sbdBQVaoB9xGk4HHKGeP5n9TeheDByNbbWvmlpESuXirBy9VLe3m8ll-2guV_TE7uNzpaaxs6-P7Vyr_JVMSCy6ebqUzZ9fPdXXIln-IfR_6Hrg</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Todd, A. D. W.</creator><creator>Ferguson, P. P.</creator><creator>Fleischauer, M. D.</creator><creator>Dahn, J. R.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201005</creationdate><title>Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods</title><author>Todd, A. D. W. ; Ferguson, P. P. ; Fleischauer, M. D. ; Dahn, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4679-72d2b01ef08fbef8f4f8ce0254d12b257df28258e4c0b557f247a306e1b59d7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alloying</topic><topic>Alloying elements</topic><topic>Batteries</topic><topic>Combinatorial analysis</topic><topic>combinatorial materials science</topic><topic>Electric batteries</topic><topic>Electrodes</topic><topic>lithium ion battery</topic><topic>mechanically alloying</topic><topic>nanostructure</topic><topic>negative electrode</topic><topic>Sn-Co-C</topic><topic>Sputtering</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Todd, A. D. W.</creatorcontrib><creatorcontrib>Ferguson, P. P.</creatorcontrib><creatorcontrib>Fleischauer, M. D.</creatorcontrib><creatorcontrib>Dahn, J. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Todd, A. D. W.</au><au>Ferguson, P. P.</au><au>Fleischauer, M. D.</au><au>Dahn, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods</atitle><jtitle>International journal of energy research</jtitle><addtitle>Int. J. Energy Res</addtitle><date>2010-05</date><risdate>2010</risdate><volume>34</volume><issue>6</issue><spage>535</spage><epage>555</epage><pages>535-555</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Graphite has been used as the negative electrode in lithium‐ion batteries for more than a decade. To attain higher energy density batteries, silicon and tin, which can alloy reversibly with lithium, have been considered as a replacement for graphite. However, the volume expansion of these metal elements upon lithiation can result in poor capacity retention. Alloying the active metal element with an inactive material can limit the overall volume expansion and improve cycle life. This paper presents a summary of tin‐based materials as negative electrodes. After reviewing attempts to improve and understand the electrochemical behaviour of metallic tin and its oxides, the focus turns to alloys of tin with a transition metal (TM) and, optionally, carbon. To do so, a combinatorial sputtering technique was used to simultaneously prepare many different compositions of Sn‐TM‐based materials. The structural and electrochemical results of these samples are presented and they show that cobalt is the preferred TM to give optimal performance. Finally, a comparison of a Sn–Co–C negative electrode material prepared by a rapid quenching method (sputtering) with a material prepared by an economical milling method (mechanical attrition) is presented and discussed. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/er.1669</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2010-05, Vol.34 (6), p.535-555
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_miscellaneous_753652259
source Wiley Online Library Journals Frontfile Complete
subjects Alloying
Alloying elements
Batteries
Combinatorial analysis
combinatorial materials science
Electric batteries
Electrodes
lithium ion battery
mechanically alloying
nanostructure
negative electrode
Sn-Co-C
Sputtering
Tin
title Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin-based%20materials%20as%20negative%20electrodes%20for%20Li-ion%20batteries:%20Combinatorial%20approaches%20and%20mechanical%20methods&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Todd,%20A.%20D.%20W.&rft.date=2010-05&rft.volume=34&rft.issue=6&rft.spage=535&rft.epage=555&rft.pages=535-555&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.1669&rft_dat=%3Cproquest_cross%3E753652259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753652259&rft_id=info:pmid/&rfr_iscdi=true