Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods
Graphite has been used as the negative electrode in lithium‐ion batteries for more than a decade. To attain higher energy density batteries, silicon and tin, which can alloy reversibly with lithium, have been considered as a replacement for graphite. However, the volume expansion of these metal elem...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2010-05, Vol.34 (6), p.535-555 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 555 |
---|---|
container_issue | 6 |
container_start_page | 535 |
container_title | International journal of energy research |
container_volume | 34 |
creator | Todd, A. D. W. Ferguson, P. P. Fleischauer, M. D. Dahn, J. R. |
description | Graphite has been used as the negative electrode in lithium‐ion batteries for more than a decade. To attain higher energy density batteries, silicon and tin, which can alloy reversibly with lithium, have been considered as a replacement for graphite. However, the volume expansion of these metal elements upon lithiation can result in poor capacity retention. Alloying the active metal element with an inactive material can limit the overall volume expansion and improve cycle life. This paper presents a summary of tin‐based materials as negative electrodes. After reviewing attempts to improve and understand the electrochemical behaviour of metallic tin and its oxides, the focus turns to alloys of tin with a transition metal (TM) and, optionally, carbon. To do so, a combinatorial sputtering technique was used to simultaneously prepare many different compositions of Sn‐TM‐based materials. The structural and electrochemical results of these samples are presented and they show that cobalt is the preferred TM to give optimal performance. Finally, a comparison of a Sn–Co–C negative electrode material prepared by a rapid quenching method (sputtering) with a material prepared by an economical milling method (mechanical attrition) is presented and discussed. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/er.1669 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753652259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753652259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4679-72d2b01ef08fbef8f4f8ce0254d12b257df28258e4c0b557f247a306e1b59d7d3</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpiFfwxoBSbCeOEzZUlQIqIBCIisVynGNqSOJgh0vfnlStYGI6w_-diw5Ch5SMKCHsBPyIpmm-hQaU5HlEaTLfRgMSp3GUEzHfRXshvBLSZ1QMUPtgm6hQAUpcqw68VVXAKuAGXlRnPwFDBbrzroSAjfN4ZiPrGlyoboUhnOKxqwvbqM6terFqW--UXvRcNf1M0AvVWN0nNXQLV4Z9tGP6HXCwqUP0eD55GF9Es9vp5fhsFukkFXkkWMkKQsGQzBRgMpOYTANhPCkpKxgXpWEZ4xkkmhScC8MSoWKSAi14XooyHqKj9dz-nvcPCJ2sbdBQVaoB9xGk4HHKGeP5n9TeheDByNbbWvmlpESuXirBy9VLe3m8ll-2guV_TE7uNzpaaxs6-P7Vyr_JVMSCy6ebqUzZ9fPdXXIln-IfR_6Hrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753652259</pqid></control><display><type>article</type><title>Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Todd, A. D. W. ; Ferguson, P. P. ; Fleischauer, M. D. ; Dahn, J. R.</creator><creatorcontrib>Todd, A. D. W. ; Ferguson, P. P. ; Fleischauer, M. D. ; Dahn, J. R.</creatorcontrib><description>Graphite has been used as the negative electrode in lithium‐ion batteries for more than a decade. To attain higher energy density batteries, silicon and tin, which can alloy reversibly with lithium, have been considered as a replacement for graphite. However, the volume expansion of these metal elements upon lithiation can result in poor capacity retention. Alloying the active metal element with an inactive material can limit the overall volume expansion and improve cycle life. This paper presents a summary of tin‐based materials as negative electrodes. After reviewing attempts to improve and understand the electrochemical behaviour of metallic tin and its oxides, the focus turns to alloys of tin with a transition metal (TM) and, optionally, carbon. To do so, a combinatorial sputtering technique was used to simultaneously prepare many different compositions of Sn‐TM‐based materials. The structural and electrochemical results of these samples are presented and they show that cobalt is the preferred TM to give optimal performance. Finally, a comparison of a Sn–Co–C negative electrode material prepared by a rapid quenching method (sputtering) with a material prepared by an economical milling method (mechanical attrition) is presented and discussed. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.1669</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Alloying ; Alloying elements ; Batteries ; Combinatorial analysis ; combinatorial materials science ; Electric batteries ; Electrodes ; lithium ion battery ; mechanically alloying ; nanostructure ; negative electrode ; Sn-Co-C ; Sputtering ; Tin</subject><ispartof>International journal of energy research, 2010-05, Vol.34 (6), p.535-555</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4679-72d2b01ef08fbef8f4f8ce0254d12b257df28258e4c0b557f247a306e1b59d7d3</citedby><cites>FETCH-LOGICAL-c4679-72d2b01ef08fbef8f4f8ce0254d12b257df28258e4c0b557f247a306e1b59d7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.1669$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.1669$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Todd, A. D. W.</creatorcontrib><creatorcontrib>Ferguson, P. P.</creatorcontrib><creatorcontrib>Fleischauer, M. D.</creatorcontrib><creatorcontrib>Dahn, J. R.</creatorcontrib><title>Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods</title><title>International journal of energy research</title><addtitle>Int. J. Energy Res</addtitle><description>Graphite has been used as the negative electrode in lithium‐ion batteries for more than a decade. To attain higher energy density batteries, silicon and tin, which can alloy reversibly with lithium, have been considered as a replacement for graphite. However, the volume expansion of these metal elements upon lithiation can result in poor capacity retention. Alloying the active metal element with an inactive material can limit the overall volume expansion and improve cycle life. This paper presents a summary of tin‐based materials as negative electrodes. After reviewing attempts to improve and understand the electrochemical behaviour of metallic tin and its oxides, the focus turns to alloys of tin with a transition metal (TM) and, optionally, carbon. To do so, a combinatorial sputtering technique was used to simultaneously prepare many different compositions of Sn‐TM‐based materials. The structural and electrochemical results of these samples are presented and they show that cobalt is the preferred TM to give optimal performance. Finally, a comparison of a Sn–Co–C negative electrode material prepared by a rapid quenching method (sputtering) with a material prepared by an economical milling method (mechanical attrition) is presented and discussed. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>Alloying</subject><subject>Alloying elements</subject><subject>Batteries</subject><subject>Combinatorial analysis</subject><subject>combinatorial materials science</subject><subject>Electric batteries</subject><subject>Electrodes</subject><subject>lithium ion battery</subject><subject>mechanically alloying</subject><subject>nanostructure</subject><subject>negative electrode</subject><subject>Sn-Co-C</subject><subject>Sputtering</subject><subject>Tin</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpiFfwxoBSbCeOEzZUlQIqIBCIisVynGNqSOJgh0vfnlStYGI6w_-diw5Ch5SMKCHsBPyIpmm-hQaU5HlEaTLfRgMSp3GUEzHfRXshvBLSZ1QMUPtgm6hQAUpcqw68VVXAKuAGXlRnPwFDBbrzroSAjfN4ZiPrGlyoboUhnOKxqwvbqM6terFqW--UXvRcNf1M0AvVWN0nNXQLV4Z9tGP6HXCwqUP0eD55GF9Es9vp5fhsFukkFXkkWMkKQsGQzBRgMpOYTANhPCkpKxgXpWEZ4xkkmhScC8MSoWKSAi14XooyHqKj9dz-nvcPCJ2sbdBQVaoB9xGk4HHKGeP5n9TeheDByNbbWvmlpESuXirBy9VLe3m8ll-2guV_TE7uNzpaaxs6-P7Vyr_JVMSCy6ebqUzZ9fPdXXIln-IfR_6Hrg</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Todd, A. D. W.</creator><creator>Ferguson, P. P.</creator><creator>Fleischauer, M. D.</creator><creator>Dahn, J. R.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201005</creationdate><title>Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods</title><author>Todd, A. D. W. ; Ferguson, P. P. ; Fleischauer, M. D. ; Dahn, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4679-72d2b01ef08fbef8f4f8ce0254d12b257df28258e4c0b557f247a306e1b59d7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alloying</topic><topic>Alloying elements</topic><topic>Batteries</topic><topic>Combinatorial analysis</topic><topic>combinatorial materials science</topic><topic>Electric batteries</topic><topic>Electrodes</topic><topic>lithium ion battery</topic><topic>mechanically alloying</topic><topic>nanostructure</topic><topic>negative electrode</topic><topic>Sn-Co-C</topic><topic>Sputtering</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Todd, A. D. W.</creatorcontrib><creatorcontrib>Ferguson, P. P.</creatorcontrib><creatorcontrib>Fleischauer, M. D.</creatorcontrib><creatorcontrib>Dahn, J. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Todd, A. D. W.</au><au>Ferguson, P. P.</au><au>Fleischauer, M. D.</au><au>Dahn, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods</atitle><jtitle>International journal of energy research</jtitle><addtitle>Int. J. Energy Res</addtitle><date>2010-05</date><risdate>2010</risdate><volume>34</volume><issue>6</issue><spage>535</spage><epage>555</epage><pages>535-555</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Graphite has been used as the negative electrode in lithium‐ion batteries for more than a decade. To attain higher energy density batteries, silicon and tin, which can alloy reversibly with lithium, have been considered as a replacement for graphite. However, the volume expansion of these metal elements upon lithiation can result in poor capacity retention. Alloying the active metal element with an inactive material can limit the overall volume expansion and improve cycle life. This paper presents a summary of tin‐based materials as negative electrodes. After reviewing attempts to improve and understand the electrochemical behaviour of metallic tin and its oxides, the focus turns to alloys of tin with a transition metal (TM) and, optionally, carbon. To do so, a combinatorial sputtering technique was used to simultaneously prepare many different compositions of Sn‐TM‐based materials. The structural and electrochemical results of these samples are presented and they show that cobalt is the preferred TM to give optimal performance. Finally, a comparison of a Sn–Co–C negative electrode material prepared by a rapid quenching method (sputtering) with a material prepared by an economical milling method (mechanical attrition) is presented and discussed. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/er.1669</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2010-05, Vol.34 (6), p.535-555 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_miscellaneous_753652259 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alloying Alloying elements Batteries Combinatorial analysis combinatorial materials science Electric batteries Electrodes lithium ion battery mechanically alloying nanostructure negative electrode Sn-Co-C Sputtering Tin |
title | Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin-based%20materials%20as%20negative%20electrodes%20for%20Li-ion%20batteries:%20Combinatorial%20approaches%20and%20mechanical%20methods&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Todd,%20A.%20D.%20W.&rft.date=2010-05&rft.volume=34&rft.issue=6&rft.spage=535&rft.epage=555&rft.pages=535-555&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.1669&rft_dat=%3Cproquest_cross%3E753652259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753652259&rft_id=info:pmid/&rfr_iscdi=true |