Bi and tri-objective optimization in the deterministic network interdiction problem
Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to...
Gespeichert in:
Veröffentlicht in: | Reliability engineering & system safety 2010-08, Vol.95 (8), p.887-896 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 896 |
---|---|
container_issue | 8 |
container_start_page | 887 |
container_title | Reliability engineering & system safety |
container_volume | 95 |
creator | ROCCO S, Claudio M RAMIREZ-MARQUEZ, José Emmanuel SALAZAR A, Daniel E |
description | Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies’ maximum source–sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach. |
doi_str_mv | 10.1016/j.ress.2010.03.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753651155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832010000748</els_id><sourcerecordid>753651155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b8acc39dcd3672e8dfd834b5cb81e4b9ec8cec135854c3e490d620cc3142e0ec3</originalsourceid><addsrcrecordid>eNp9kE1PHDEMhqMKpC4ff6CnuaCeZnGSyWxG6qUgWiqt1EPhHGUcr-plPrZJAMGvb7aLOPZkyX5eW36E-CRhKUG2l9tlpJSWCkoD9BLAfhALaVddDVa3R2IBnZG11Qo-ipOUtgDQdGa1EL-uuPJTqHLkeu63hJmfqJp3mUd-9ZnnqeKpyr-pCpQpjjxxyozVRPl5jg9lWLqB8R-5i3M_0Hgmjjd-SHT-Vk_F_bebu-vbev3z-4_rr-sadaty3VuPqLuAQbcrRTZsgtVNb7C3kpq-I7RIKLWxpkFNTQehVVAislEEhPpUfD7sLXf_PFLKbuSENAx-ovkxuZXRrZHSmEKqA4lxTinSxu0ijz6-OAluL9Bt3V6g2wt0oF0RWEIXb-t9Qj9sop-Q03tSKaut0rJwXw4clV-fmKJLyDQhBY7Fpwsz_-_MX8qviME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753651155</pqid></control><display><type>article</type><title>Bi and tri-objective optimization in the deterministic network interdiction problem</title><source>Elsevier ScienceDirect Journals</source><creator>ROCCO S, Claudio M ; RAMIREZ-MARQUEZ, José Emmanuel ; SALAZAR A, Daniel E</creator><creatorcontrib>ROCCO S, Claudio M ; RAMIREZ-MARQUEZ, José Emmanuel ; SALAZAR A, Daniel E</creatorcontrib><description>Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies’ maximum source–sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2010.03.008</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Computer simulation ; Decision theory. Utility theory ; Design engineering ; Evolutionary ; Evolutionary algorithms ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Interdiction ; Links ; Monte Carlo methods ; Multi-objective ; Network ; Networks ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Reliability theory. Replacement problems ; Strategy</subject><ispartof>Reliability engineering & system safety, 2010-08, Vol.95 (8), p.887-896</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-b8acc39dcd3672e8dfd834b5cb81e4b9ec8cec135854c3e490d620cc3142e0ec3</citedby><cites>FETCH-LOGICAL-c362t-b8acc39dcd3672e8dfd834b5cb81e4b9ec8cec135854c3e490d620cc3142e0ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0951832010000748$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22838231$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ROCCO S, Claudio M</creatorcontrib><creatorcontrib>RAMIREZ-MARQUEZ, José Emmanuel</creatorcontrib><creatorcontrib>SALAZAR A, Daniel E</creatorcontrib><title>Bi and tri-objective optimization in the deterministic network interdiction problem</title><title>Reliability engineering & system safety</title><description>Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies’ maximum source–sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Decision theory. Utility theory</subject><subject>Design engineering</subject><subject>Evolutionary</subject><subject>Evolutionary algorithms</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Interdiction</subject><subject>Links</subject><subject>Monte Carlo methods</subject><subject>Multi-objective</subject><subject>Network</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Reliability theory. Replacement problems</subject><subject>Strategy</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PHDEMhqMKpC4ff6CnuaCeZnGSyWxG6qUgWiqt1EPhHGUcr-plPrZJAMGvb7aLOPZkyX5eW36E-CRhKUG2l9tlpJSWCkoD9BLAfhALaVddDVa3R2IBnZG11Qo-ipOUtgDQdGa1EL-uuPJTqHLkeu63hJmfqJp3mUd-9ZnnqeKpyr-pCpQpjjxxyozVRPl5jg9lWLqB8R-5i3M_0Hgmjjd-SHT-Vk_F_bebu-vbev3z-4_rr-sadaty3VuPqLuAQbcrRTZsgtVNb7C3kpq-I7RIKLWxpkFNTQehVVAislEEhPpUfD7sLXf_PFLKbuSENAx-ovkxuZXRrZHSmEKqA4lxTinSxu0ijz6-OAluL9Bt3V6g2wt0oF0RWEIXb-t9Qj9sop-Q03tSKaut0rJwXw4clV-fmKJLyDQhBY7Fpwsz_-_MX8qviME</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>ROCCO S, Claudio M</creator><creator>RAMIREZ-MARQUEZ, José Emmanuel</creator><creator>SALAZAR A, Daniel E</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20100801</creationdate><title>Bi and tri-objective optimization in the deterministic network interdiction problem</title><author>ROCCO S, Claudio M ; RAMIREZ-MARQUEZ, José Emmanuel ; SALAZAR A, Daniel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b8acc39dcd3672e8dfd834b5cb81e4b9ec8cec135854c3e490d620cc3142e0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Decision theory. Utility theory</topic><topic>Design engineering</topic><topic>Evolutionary</topic><topic>Evolutionary algorithms</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Interdiction</topic><topic>Links</topic><topic>Monte Carlo methods</topic><topic>Multi-objective</topic><topic>Network</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Reliability theory. Replacement problems</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROCCO S, Claudio M</creatorcontrib><creatorcontrib>RAMIREZ-MARQUEZ, José Emmanuel</creatorcontrib><creatorcontrib>SALAZAR A, Daniel E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Reliability engineering & system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROCCO S, Claudio M</au><au>RAMIREZ-MARQUEZ, José Emmanuel</au><au>SALAZAR A, Daniel E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi and tri-objective optimization in the deterministic network interdiction problem</atitle><jtitle>Reliability engineering & system safety</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>95</volume><issue>8</issue><spage>887</spage><epage>896</epage><pages>887-896</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies’ maximum source–sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2010.03.008</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-8320 |
ispartof | Reliability engineering & system safety, 2010-08, Vol.95 (8), p.887-896 |
issn | 0951-8320 1879-0836 |
language | eng |
recordid | cdi_proquest_miscellaneous_753651155 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Computer simulation Decision theory. Utility theory Design engineering Evolutionary Evolutionary algorithms Exact sciences and technology Flows in networks. Combinatorial problems Interdiction Links Monte Carlo methods Multi-objective Network Networks Operational research and scientific management Operational research. Management science Optimization Reliability theory. Replacement problems Strategy |
title | Bi and tri-objective optimization in the deterministic network interdiction problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi%20and%20tri-objective%20optimization%20in%20the%20deterministic%20network%20interdiction%20problem&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=ROCCO%20S,%20Claudio%20M&rft.date=2010-08-01&rft.volume=95&rft.issue=8&rft.spage=887&rft.epage=896&rft.pages=887-896&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2010.03.008&rft_dat=%3Cproquest_cross%3E753651155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753651155&rft_id=info:pmid/&rft_els_id=S0951832010000748&rfr_iscdi=true |