Bi and tri-objective optimization in the deterministic network interdiction problem

Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2010-08, Vol.95 (8), p.887-896
Hauptverfasser: ROCCO S, Claudio M, RAMIREZ-MARQUEZ, José Emmanuel, SALAZAR A, Daniel E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 896
container_issue 8
container_start_page 887
container_title Reliability engineering & system safety
container_volume 95
creator ROCCO S, Claudio M
RAMIREZ-MARQUEZ, José Emmanuel
SALAZAR A, Daniel E
description Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies’ maximum source–sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.
doi_str_mv 10.1016/j.ress.2010.03.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753651155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832010000748</els_id><sourcerecordid>753651155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b8acc39dcd3672e8dfd834b5cb81e4b9ec8cec135854c3e490d620cc3142e0ec3</originalsourceid><addsrcrecordid>eNp9kE1PHDEMhqMKpC4ff6CnuaCeZnGSyWxG6qUgWiqt1EPhHGUcr-plPrZJAMGvb7aLOPZkyX5eW36E-CRhKUG2l9tlpJSWCkoD9BLAfhALaVddDVa3R2IBnZG11Qo-ipOUtgDQdGa1EL-uuPJTqHLkeu63hJmfqJp3mUd-9ZnnqeKpyr-pCpQpjjxxyozVRPl5jg9lWLqB8R-5i3M_0Hgmjjd-SHT-Vk_F_bebu-vbev3z-4_rr-sadaty3VuPqLuAQbcrRTZsgtVNb7C3kpq-I7RIKLWxpkFNTQehVVAislEEhPpUfD7sLXf_PFLKbuSENAx-ovkxuZXRrZHSmEKqA4lxTinSxu0ijz6-OAluL9Bt3V6g2wt0oF0RWEIXb-t9Qj9sop-Q03tSKaut0rJwXw4clV-fmKJLyDQhBY7Fpwsz_-_MX8qviME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753651155</pqid></control><display><type>article</type><title>Bi and tri-objective optimization in the deterministic network interdiction problem</title><source>Elsevier ScienceDirect Journals</source><creator>ROCCO S, Claudio M ; RAMIREZ-MARQUEZ, José Emmanuel ; SALAZAR A, Daniel E</creator><creatorcontrib>ROCCO S, Claudio M ; RAMIREZ-MARQUEZ, José Emmanuel ; SALAZAR A, Daniel E</creatorcontrib><description>Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies’ maximum source–sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2010.03.008</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Computer simulation ; Decision theory. Utility theory ; Design engineering ; Evolutionary ; Evolutionary algorithms ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Interdiction ; Links ; Monte Carlo methods ; Multi-objective ; Network ; Networks ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Reliability theory. Replacement problems ; Strategy</subject><ispartof>Reliability engineering &amp; system safety, 2010-08, Vol.95 (8), p.887-896</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-b8acc39dcd3672e8dfd834b5cb81e4b9ec8cec135854c3e490d620cc3142e0ec3</citedby><cites>FETCH-LOGICAL-c362t-b8acc39dcd3672e8dfd834b5cb81e4b9ec8cec135854c3e490d620cc3142e0ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0951832010000748$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22838231$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ROCCO S, Claudio M</creatorcontrib><creatorcontrib>RAMIREZ-MARQUEZ, José Emmanuel</creatorcontrib><creatorcontrib>SALAZAR A, Daniel E</creatorcontrib><title>Bi and tri-objective optimization in the deterministic network interdiction problem</title><title>Reliability engineering &amp; system safety</title><description>Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies’ maximum source–sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Decision theory. Utility theory</subject><subject>Design engineering</subject><subject>Evolutionary</subject><subject>Evolutionary algorithms</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Interdiction</subject><subject>Links</subject><subject>Monte Carlo methods</subject><subject>Multi-objective</subject><subject>Network</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Reliability theory. Replacement problems</subject><subject>Strategy</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PHDEMhqMKpC4ff6CnuaCeZnGSyWxG6qUgWiqt1EPhHGUcr-plPrZJAMGvb7aLOPZkyX5eW36E-CRhKUG2l9tlpJSWCkoD9BLAfhALaVddDVa3R2IBnZG11Qo-ipOUtgDQdGa1EL-uuPJTqHLkeu63hJmfqJp3mUd-9ZnnqeKpyr-pCpQpjjxxyozVRPl5jg9lWLqB8R-5i3M_0Hgmjjd-SHT-Vk_F_bebu-vbev3z-4_rr-sadaty3VuPqLuAQbcrRTZsgtVNb7C3kpq-I7RIKLWxpkFNTQehVVAislEEhPpUfD7sLXf_PFLKbuSENAx-ovkxuZXRrZHSmEKqA4lxTinSxu0ijz6-OAluL9Bt3V6g2wt0oF0RWEIXb-t9Qj9sop-Q03tSKaut0rJwXw4clV-fmKJLyDQhBY7Fpwsz_-_MX8qviME</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>ROCCO S, Claudio M</creator><creator>RAMIREZ-MARQUEZ, José Emmanuel</creator><creator>SALAZAR A, Daniel E</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20100801</creationdate><title>Bi and tri-objective optimization in the deterministic network interdiction problem</title><author>ROCCO S, Claudio M ; RAMIREZ-MARQUEZ, José Emmanuel ; SALAZAR A, Daniel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b8acc39dcd3672e8dfd834b5cb81e4b9ec8cec135854c3e490d620cc3142e0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Decision theory. Utility theory</topic><topic>Design engineering</topic><topic>Evolutionary</topic><topic>Evolutionary algorithms</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Interdiction</topic><topic>Links</topic><topic>Monte Carlo methods</topic><topic>Multi-objective</topic><topic>Network</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Reliability theory. Replacement problems</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROCCO S, Claudio M</creatorcontrib><creatorcontrib>RAMIREZ-MARQUEZ, José Emmanuel</creatorcontrib><creatorcontrib>SALAZAR A, Daniel E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROCCO S, Claudio M</au><au>RAMIREZ-MARQUEZ, José Emmanuel</au><au>SALAZAR A, Daniel E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi and tri-objective optimization in the deterministic network interdiction problem</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>95</volume><issue>8</issue><spage>887</spage><epage>896</epage><pages>887-896</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>Solution approaches to the deterministic network interdiction problem have previously been developed for optimizing a single figure-of-merit of the network configuration (i.e. flow that can be transmitted between a source node and a sink node for a fixed network design) under constraints related to limited amount of resources available to interdict network links. These approaches work under the assumption that: (1) nominal capacity of each link is completely reduced when interdicted and (2) there is a single criterion to optimize. This paper presents a newly developed evolutionary algorithm that for the first time allows solving multi-objective optimization models for the design of network interdiction strategies that take into account a variety of figures-of-merit. The algorithm provides an approximation to the optimal Pareto frontier using: (a) techniques in Monte Carlo simulation to generate potential network interdiction strategies, (b) graph theory to analyze strategies’ maximum source–sink flow and (c) an evolutionary search that is driven by the probability that a link will belong to the optimal Pareto set. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate and validate the approach.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2010.03.008</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2010-08, Vol.95 (8), p.887-896
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_miscellaneous_753651155
source Elsevier ScienceDirect Journals
subjects Applied sciences
Computer simulation
Decision theory. Utility theory
Design engineering
Evolutionary
Evolutionary algorithms
Exact sciences and technology
Flows in networks. Combinatorial problems
Interdiction
Links
Monte Carlo methods
Multi-objective
Network
Networks
Operational research and scientific management
Operational research. Management science
Optimization
Reliability theory. Replacement problems
Strategy
title Bi and tri-objective optimization in the deterministic network interdiction problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi%20and%20tri-objective%20optimization%20in%20the%20deterministic%20network%20interdiction%20problem&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=ROCCO%20S,%20Claudio%20M&rft.date=2010-08-01&rft.volume=95&rft.issue=8&rft.spage=887&rft.epage=896&rft.pages=887-896&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2010.03.008&rft_dat=%3Cproquest_cross%3E753651155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753651155&rft_id=info:pmid/&rft_els_id=S0951832010000748&rfr_iscdi=true