Influence of nanoparticle addition to Winsor surfactant microemulsion systems
The influence of adding negatively charged silica nanoparticles to multiphase Winsor microemulsion systems of cationic surfactant/alcohol cosurfactant is reported. It is found that the particles do not change the salt-induced progression of Winsor systems to any great extent, even when added at the...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2010-06, Vol.363 (1), p.8-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 8 |
container_title | Colloids and surfaces. A, Physicochemical and engineering aspects |
container_volume | 363 |
creator | Binks, B.P. Fletcher, P.D.I. Tian, L. |
description | The influence of adding negatively charged silica nanoparticles to multiphase Winsor microemulsion systems of cationic surfactant/alcohol cosurfactant is reported. It is found that the particles do not change the salt-induced progression of Winsor systems to any great extent, even when added at the same concentration as the surfactant. We find that all of the particles transfer from water where they originate to oil at all salt concentrations, although the distribution of surfactant between phases is unaffected. It is ascertained that alcohol addition renders particles more hydrophobic promoting this transfer. Emulsions prepared from the equilibrium microemulsion and excess phase(s) invert from oil-in-water to water-in-oil with increasing salt concentration, such that the continuous phase is the one containing the surfactant aggregates. Their stability to coalescence is extremely low, due to mainly the ultralow tensions at the oil–water interface. Particle addition does not alter the emulsion stability, implying that they are not adsorbed to drop interfaces. |
doi_str_mv | 10.1016/j.colsurfa.2010.03.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753648531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775710002190</els_id><sourcerecordid>753648531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-70e406180fffe53f7bc7d640e36f4340c7b4ed000dd6444b16863204f7be2ea53</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BelFPLWmTdp0b8rix8KKF8VjyKYTyNImayYV_Pem7urV08DwzLwzDyGXJS1KWjY320L7HsdgVFHR1KSsoLw-IrOyFSznrF4ckxldVCIXohan5AxxS2lCxGJGnlfO9CM4DZk3mVPO71SIVveQqa6z0XqXRZ-9W4c-ZD8pOioXs8Hq4GEYe5wQ_MIIA56TE6N6hItDnZO3h_vX5VO-fnlcLe_WuWaCx1xQ4LQpW2qMgZoZsdGiazgF1hjOONViw6FLN3apy_mmbNqGVZQnECpQNZuT6_3eXfAfI2CUg0UNfa8c-BGlqFnD25qViWz2ZLoWMYCRu2AHFb5kSeWkT27lrz456ZOUyeQmDV4dIhRq1ZugnLb4N11VLWvT_sTd7jlI_35aCBK1nXx2NoCOsvP2v6hv2HeKpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753648531</pqid></control><display><type>article</type><title>Influence of nanoparticle addition to Winsor surfactant microemulsion systems</title><source>Elsevier ScienceDirect Journals</source><creator>Binks, B.P. ; Fletcher, P.D.I. ; Tian, L.</creator><creatorcontrib>Binks, B.P. ; Fletcher, P.D.I. ; Tian, L.</creatorcontrib><description>The influence of adding negatively charged silica nanoparticles to multiphase Winsor microemulsion systems of cationic surfactant/alcohol cosurfactant is reported. It is found that the particles do not change the salt-induced progression of Winsor systems to any great extent, even when added at the same concentration as the surfactant. We find that all of the particles transfer from water where they originate to oil at all salt concentrations, although the distribution of surfactant between phases is unaffected. It is ascertained that alcohol addition renders particles more hydrophobic promoting this transfer. Emulsions prepared from the equilibrium microemulsion and excess phase(s) invert from oil-in-water to water-in-oil with increasing salt concentration, such that the continuous phase is the one containing the surfactant aggregates. Their stability to coalescence is extremely low, due to mainly the ultralow tensions at the oil–water interface. Particle addition does not alter the emulsion stability, implying that they are not adsorbed to drop interfaces.</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2010.03.045</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Alcohols ; Cationic ; Chemistry ; Colloidal state and disperse state ; Emulsion ; Emulsions ; Emulsions. Microemulsions. Foams ; Exact sciences and technology ; General and physical chemistry ; Microemulsion ; Microemulsions ; Nanoparticle ; Nanostructure ; Phases ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Stability ; Surface physical chemistry ; Surfactant ; Surfactants ; Winsor</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2010-06, Vol.363 (1), p.8-15</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-70e406180fffe53f7bc7d640e36f4340c7b4ed000dd6444b16863204f7be2ea53</citedby><cites>FETCH-LOGICAL-c374t-70e406180fffe53f7bc7d640e36f4340c7b4ed000dd6444b16863204f7be2ea53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927775710002190$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22838313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Binks, B.P.</creatorcontrib><creatorcontrib>Fletcher, P.D.I.</creatorcontrib><creatorcontrib>Tian, L.</creatorcontrib><title>Influence of nanoparticle addition to Winsor surfactant microemulsion systems</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>The influence of adding negatively charged silica nanoparticles to multiphase Winsor microemulsion systems of cationic surfactant/alcohol cosurfactant is reported. It is found that the particles do not change the salt-induced progression of Winsor systems to any great extent, even when added at the same concentration as the surfactant. We find that all of the particles transfer from water where they originate to oil at all salt concentrations, although the distribution of surfactant between phases is unaffected. It is ascertained that alcohol addition renders particles more hydrophobic promoting this transfer. Emulsions prepared from the equilibrium microemulsion and excess phase(s) invert from oil-in-water to water-in-oil with increasing salt concentration, such that the continuous phase is the one containing the surfactant aggregates. Their stability to coalescence is extremely low, due to mainly the ultralow tensions at the oil–water interface. Particle addition does not alter the emulsion stability, implying that they are not adsorbed to drop interfaces.</description><subject>Alcohols</subject><subject>Cationic</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Emulsion</subject><subject>Emulsions</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microemulsion</subject><subject>Microemulsions</subject><subject>Nanoparticle</subject><subject>Nanostructure</subject><subject>Phases</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Stability</subject><subject>Surface physical chemistry</subject><subject>Surfactant</subject><subject>Surfactants</subject><subject>Winsor</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BelFPLWmTdp0b8rix8KKF8VjyKYTyNImayYV_Pem7urV08DwzLwzDyGXJS1KWjY320L7HsdgVFHR1KSsoLw-IrOyFSznrF4ckxldVCIXohan5AxxS2lCxGJGnlfO9CM4DZk3mVPO71SIVveQqa6z0XqXRZ-9W4c-ZD8pOioXs8Hq4GEYe5wQ_MIIA56TE6N6hItDnZO3h_vX5VO-fnlcLe_WuWaCx1xQ4LQpW2qMgZoZsdGiazgF1hjOONViw6FLN3apy_mmbNqGVZQnECpQNZuT6_3eXfAfI2CUg0UNfa8c-BGlqFnD25qViWz2ZLoWMYCRu2AHFb5kSeWkT27lrz456ZOUyeQmDV4dIhRq1ZugnLb4N11VLWvT_sTd7jlI_35aCBK1nXx2NoCOsvP2v6hv2HeKpA</recordid><startdate>20100620</startdate><enddate>20100620</enddate><creator>Binks, B.P.</creator><creator>Fletcher, P.D.I.</creator><creator>Tian, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100620</creationdate><title>Influence of nanoparticle addition to Winsor surfactant microemulsion systems</title><author>Binks, B.P. ; Fletcher, P.D.I. ; Tian, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-70e406180fffe53f7bc7d640e36f4340c7b4ed000dd6444b16863204f7be2ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alcohols</topic><topic>Cationic</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Emulsion</topic><topic>Emulsions</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microemulsion</topic><topic>Microemulsions</topic><topic>Nanoparticle</topic><topic>Nanostructure</topic><topic>Phases</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Stability</topic><topic>Surface physical chemistry</topic><topic>Surfactant</topic><topic>Surfactants</topic><topic>Winsor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binks, B.P.</creatorcontrib><creatorcontrib>Fletcher, P.D.I.</creatorcontrib><creatorcontrib>Tian, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binks, B.P.</au><au>Fletcher, P.D.I.</au><au>Tian, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of nanoparticle addition to Winsor surfactant microemulsion systems</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2010-06-20</date><risdate>2010</risdate><volume>363</volume><issue>1</issue><spage>8</spage><epage>15</epage><pages>8-15</pages><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>The influence of adding negatively charged silica nanoparticles to multiphase Winsor microemulsion systems of cationic surfactant/alcohol cosurfactant is reported. It is found that the particles do not change the salt-induced progression of Winsor systems to any great extent, even when added at the same concentration as the surfactant. We find that all of the particles transfer from water where they originate to oil at all salt concentrations, although the distribution of surfactant between phases is unaffected. It is ascertained that alcohol addition renders particles more hydrophobic promoting this transfer. Emulsions prepared from the equilibrium microemulsion and excess phase(s) invert from oil-in-water to water-in-oil with increasing salt concentration, such that the continuous phase is the one containing the surfactant aggregates. Their stability to coalescence is extremely low, due to mainly the ultralow tensions at the oil–water interface. Particle addition does not alter the emulsion stability, implying that they are not adsorbed to drop interfaces.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2010.03.045</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7757 |
ispartof | Colloids and surfaces. A, Physicochemical and engineering aspects, 2010-06, Vol.363 (1), p.8-15 |
issn | 0927-7757 1873-4359 |
language | eng |
recordid | cdi_proquest_miscellaneous_753648531 |
source | Elsevier ScienceDirect Journals |
subjects | Alcohols Cationic Chemistry Colloidal state and disperse state Emulsion Emulsions Emulsions. Microemulsions. Foams Exact sciences and technology General and physical chemistry Microemulsion Microemulsions Nanoparticle Nanostructure Phases Physical and chemical studies. Granulometry. Electrokinetic phenomena Stability Surface physical chemistry Surfactant Surfactants Winsor |
title | Influence of nanoparticle addition to Winsor surfactant microemulsion systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20nanoparticle%20addition%20to%20Winsor%20surfactant%20microemulsion%20systems&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Binks,%20B.P.&rft.date=2010-06-20&rft.volume=363&rft.issue=1&rft.spage=8&rft.epage=15&rft.pages=8-15&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2010.03.045&rft_dat=%3Cproquest_cross%3E753648531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753648531&rft_id=info:pmid/&rft_els_id=S0927775710002190&rfr_iscdi=true |