Influence of nanoparticle addition to Winsor surfactant microemulsion systems

The influence of adding negatively charged silica nanoparticles to multiphase Winsor microemulsion systems of cationic surfactant/alcohol cosurfactant is reported. It is found that the particles do not change the salt-induced progression of Winsor systems to any great extent, even when added at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2010-06, Vol.363 (1), p.8-15
Hauptverfasser: Binks, B.P., Fletcher, P.D.I., Tian, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 8
container_title Colloids and surfaces. A, Physicochemical and engineering aspects
container_volume 363
creator Binks, B.P.
Fletcher, P.D.I.
Tian, L.
description The influence of adding negatively charged silica nanoparticles to multiphase Winsor microemulsion systems of cationic surfactant/alcohol cosurfactant is reported. It is found that the particles do not change the salt-induced progression of Winsor systems to any great extent, even when added at the same concentration as the surfactant. We find that all of the particles transfer from water where they originate to oil at all salt concentrations, although the distribution of surfactant between phases is unaffected. It is ascertained that alcohol addition renders particles more hydrophobic promoting this transfer. Emulsions prepared from the equilibrium microemulsion and excess phase(s) invert from oil-in-water to water-in-oil with increasing salt concentration, such that the continuous phase is the one containing the surfactant aggregates. Their stability to coalescence is extremely low, due to mainly the ultralow tensions at the oil–water interface. Particle addition does not alter the emulsion stability, implying that they are not adsorbed to drop interfaces.
doi_str_mv 10.1016/j.colsurfa.2010.03.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753648531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775710002190</els_id><sourcerecordid>753648531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-70e406180fffe53f7bc7d640e36f4340c7b4ed000dd6444b16863204f7be2ea53</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BelFPLWmTdp0b8rix8KKF8VjyKYTyNImayYV_Pem7urV08DwzLwzDyGXJS1KWjY320L7HsdgVFHR1KSsoLw-IrOyFSznrF4ckxldVCIXohan5AxxS2lCxGJGnlfO9CM4DZk3mVPO71SIVveQqa6z0XqXRZ-9W4c-ZD8pOioXs8Hq4GEYe5wQ_MIIA56TE6N6hItDnZO3h_vX5VO-fnlcLe_WuWaCx1xQ4LQpW2qMgZoZsdGiazgF1hjOONViw6FLN3apy_mmbNqGVZQnECpQNZuT6_3eXfAfI2CUg0UNfa8c-BGlqFnD25qViWz2ZLoWMYCRu2AHFb5kSeWkT27lrz456ZOUyeQmDV4dIhRq1ZugnLb4N11VLWvT_sTd7jlI_35aCBK1nXx2NoCOsvP2v6hv2HeKpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753648531</pqid></control><display><type>article</type><title>Influence of nanoparticle addition to Winsor surfactant microemulsion systems</title><source>Elsevier ScienceDirect Journals</source><creator>Binks, B.P. ; Fletcher, P.D.I. ; Tian, L.</creator><creatorcontrib>Binks, B.P. ; Fletcher, P.D.I. ; Tian, L.</creatorcontrib><description>The influence of adding negatively charged silica nanoparticles to multiphase Winsor microemulsion systems of cationic surfactant/alcohol cosurfactant is reported. It is found that the particles do not change the salt-induced progression of Winsor systems to any great extent, even when added at the same concentration as the surfactant. We find that all of the particles transfer from water where they originate to oil at all salt concentrations, although the distribution of surfactant between phases is unaffected. It is ascertained that alcohol addition renders particles more hydrophobic promoting this transfer. Emulsions prepared from the equilibrium microemulsion and excess phase(s) invert from oil-in-water to water-in-oil with increasing salt concentration, such that the continuous phase is the one containing the surfactant aggregates. Their stability to coalescence is extremely low, due to mainly the ultralow tensions at the oil–water interface. Particle addition does not alter the emulsion stability, implying that they are not adsorbed to drop interfaces.</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2010.03.045</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Alcohols ; Cationic ; Chemistry ; Colloidal state and disperse state ; Emulsion ; Emulsions ; Emulsions. Microemulsions. Foams ; Exact sciences and technology ; General and physical chemistry ; Microemulsion ; Microemulsions ; Nanoparticle ; Nanostructure ; Phases ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Stability ; Surface physical chemistry ; Surfactant ; Surfactants ; Winsor</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2010-06, Vol.363 (1), p.8-15</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-70e406180fffe53f7bc7d640e36f4340c7b4ed000dd6444b16863204f7be2ea53</citedby><cites>FETCH-LOGICAL-c374t-70e406180fffe53f7bc7d640e36f4340c7b4ed000dd6444b16863204f7be2ea53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927775710002190$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22838313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Binks, B.P.</creatorcontrib><creatorcontrib>Fletcher, P.D.I.</creatorcontrib><creatorcontrib>Tian, L.</creatorcontrib><title>Influence of nanoparticle addition to Winsor surfactant microemulsion systems</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>The influence of adding negatively charged silica nanoparticles to multiphase Winsor microemulsion systems of cationic surfactant/alcohol cosurfactant is reported. It is found that the particles do not change the salt-induced progression of Winsor systems to any great extent, even when added at the same concentration as the surfactant. We find that all of the particles transfer from water where they originate to oil at all salt concentrations, although the distribution of surfactant between phases is unaffected. It is ascertained that alcohol addition renders particles more hydrophobic promoting this transfer. Emulsions prepared from the equilibrium microemulsion and excess phase(s) invert from oil-in-water to water-in-oil with increasing salt concentration, such that the continuous phase is the one containing the surfactant aggregates. Their stability to coalescence is extremely low, due to mainly the ultralow tensions at the oil–water interface. Particle addition does not alter the emulsion stability, implying that they are not adsorbed to drop interfaces.</description><subject>Alcohols</subject><subject>Cationic</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Emulsion</subject><subject>Emulsions</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microemulsion</subject><subject>Microemulsions</subject><subject>Nanoparticle</subject><subject>Nanostructure</subject><subject>Phases</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Stability</subject><subject>Surface physical chemistry</subject><subject>Surfactant</subject><subject>Surfactants</subject><subject>Winsor</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BelFPLWmTdp0b8rix8KKF8VjyKYTyNImayYV_Pem7urV08DwzLwzDyGXJS1KWjY320L7HsdgVFHR1KSsoLw-IrOyFSznrF4ckxldVCIXohan5AxxS2lCxGJGnlfO9CM4DZk3mVPO71SIVveQqa6z0XqXRZ-9W4c-ZD8pOioXs8Hq4GEYe5wQ_MIIA56TE6N6hItDnZO3h_vX5VO-fnlcLe_WuWaCx1xQ4LQpW2qMgZoZsdGiazgF1hjOONViw6FLN3apy_mmbNqGVZQnECpQNZuT6_3eXfAfI2CUg0UNfa8c-BGlqFnD25qViWz2ZLoWMYCRu2AHFb5kSeWkT27lrz456ZOUyeQmDV4dIhRq1ZugnLb4N11VLWvT_sTd7jlI_35aCBK1nXx2NoCOsvP2v6hv2HeKpA</recordid><startdate>20100620</startdate><enddate>20100620</enddate><creator>Binks, B.P.</creator><creator>Fletcher, P.D.I.</creator><creator>Tian, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100620</creationdate><title>Influence of nanoparticle addition to Winsor surfactant microemulsion systems</title><author>Binks, B.P. ; Fletcher, P.D.I. ; Tian, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-70e406180fffe53f7bc7d640e36f4340c7b4ed000dd6444b16863204f7be2ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alcohols</topic><topic>Cationic</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Emulsion</topic><topic>Emulsions</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microemulsion</topic><topic>Microemulsions</topic><topic>Nanoparticle</topic><topic>Nanostructure</topic><topic>Phases</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Stability</topic><topic>Surface physical chemistry</topic><topic>Surfactant</topic><topic>Surfactants</topic><topic>Winsor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binks, B.P.</creatorcontrib><creatorcontrib>Fletcher, P.D.I.</creatorcontrib><creatorcontrib>Tian, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binks, B.P.</au><au>Fletcher, P.D.I.</au><au>Tian, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of nanoparticle addition to Winsor surfactant microemulsion systems</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2010-06-20</date><risdate>2010</risdate><volume>363</volume><issue>1</issue><spage>8</spage><epage>15</epage><pages>8-15</pages><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>The influence of adding negatively charged silica nanoparticles to multiphase Winsor microemulsion systems of cationic surfactant/alcohol cosurfactant is reported. It is found that the particles do not change the salt-induced progression of Winsor systems to any great extent, even when added at the same concentration as the surfactant. We find that all of the particles transfer from water where they originate to oil at all salt concentrations, although the distribution of surfactant between phases is unaffected. It is ascertained that alcohol addition renders particles more hydrophobic promoting this transfer. Emulsions prepared from the equilibrium microemulsion and excess phase(s) invert from oil-in-water to water-in-oil with increasing salt concentration, such that the continuous phase is the one containing the surfactant aggregates. Their stability to coalescence is extremely low, due to mainly the ultralow tensions at the oil–water interface. Particle addition does not alter the emulsion stability, implying that they are not adsorbed to drop interfaces.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2010.03.045</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7757
ispartof Colloids and surfaces. A, Physicochemical and engineering aspects, 2010-06, Vol.363 (1), p.8-15
issn 0927-7757
1873-4359
language eng
recordid cdi_proquest_miscellaneous_753648531
source Elsevier ScienceDirect Journals
subjects Alcohols
Cationic
Chemistry
Colloidal state and disperse state
Emulsion
Emulsions
Emulsions. Microemulsions. Foams
Exact sciences and technology
General and physical chemistry
Microemulsion
Microemulsions
Nanoparticle
Nanostructure
Phases
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Stability
Surface physical chemistry
Surfactant
Surfactants
Winsor
title Influence of nanoparticle addition to Winsor surfactant microemulsion systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20nanoparticle%20addition%20to%20Winsor%20surfactant%20microemulsion%20systems&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Binks,%20B.P.&rft.date=2010-06-20&rft.volume=363&rft.issue=1&rft.spage=8&rft.epage=15&rft.pages=8-15&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2010.03.045&rft_dat=%3Cproquest_cross%3E753648531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753648531&rft_id=info:pmid/&rft_els_id=S0927775710002190&rfr_iscdi=true