Stability of cerium-modified γ-alumina catalyst support in supercritical water

Supercritical water is emerging as a promising medium to carry out a variety of catalytic reactions. However the support material can undergo transformation in the hydrothermal environment, as shown in the figure below. In this work the stability of a common support material γ-Al 2O 3 is examined at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. A, General General, 2010-06, Vol.381 (1), p.177-182
Hauptverfasser: Byrd, Adam J., Gupta, Ram B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 1
container_start_page 177
container_title Applied catalysis. A, General
container_volume 381
creator Byrd, Adam J.
Gupta, Ram B.
description Supercritical water is emerging as a promising medium to carry out a variety of catalytic reactions. However the support material can undergo transformation in the hydrothermal environment, as shown in the figure below. In this work the stability of a common support material γ-Al 2O 3 is examined at 500–700 °C and 246 bar. Supercritical water (above 374.1 °C and 220.6 bar) is emerging as a promising medium to carry out a variety of catalytic reactions, including reforming to produce hydrogen. However, when using a heterogeneous catalyst the support material can undergo transformations in the hydrothermal environment. In this work the stability of γ-Al 2O 3 modified with 1–10 wt% Ce in supercritical water is examined, specifically in the temperature range of 500–700 °C at 246 bar. Transformations of the γ-phase were slowed but not prevented. Based on X-ray analysis, the transformation of γ-Al 2O 3 proceeded through the κ phase toward the stable α phase. Reduced cerium species were seen to be oxidized in the supercritical water environment, and low Ce-loading supports maintained the highest BET surface areas. The stabilization was greatest at 700 °C, where Ce-modified aluminas retained significantly higher specific surface areas than unmodified alumina.
doi_str_mv 10.1016/j.apcata.2010.04.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753646157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926860X1000267X</els_id><sourcerecordid>753646157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-58f215de448dad55c5dd233e8a6277bbd407e297bf1789bc4d5006d0aef0d3b23</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKtv4GI24mpqJpO_bgQp_kGhCxXchUxyB1LmzySj9Ll8D5_JDC0uXd3L5Tv3cA5ClwVeFLjgN9uFHoyOekFwOmG6wJgfoVkhRZmXUrBjNMNLwnPJ8fspOgthizEmdMlmaPMSdeUaF3dZX2cGvBvbvO2tqx3Y7Oc7183Yuk5n0_9mF2IWxmHofcxcN63gjXfRGd1kXzqCP0cntW4CXBzmHL093L-unvL15vF5dbfOTcllzJmsScEsUCqttowZZi0pS5CaEyGqylIsgCxFVRdCLitDLUuZLNZQY1tWpJyj6_3fwfcfI4SoWhcMNI3uoB-DEqzklBdMJJLuSeP7EDzUavCu1X6nCqym-tRW7etTU30KU5WskuzqYKBDSld73RkX_rSESJ7ENHG3ew5S2k8HXgXjoDNgnQcTle3d_0a_Of2Jew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753646157</pqid></control><display><type>article</type><title>Stability of cerium-modified γ-alumina catalyst support in supercritical water</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Byrd, Adam J. ; Gupta, Ram B.</creator><creatorcontrib>Byrd, Adam J. ; Gupta, Ram B.</creatorcontrib><description>Supercritical water is emerging as a promising medium to carry out a variety of catalytic reactions. However the support material can undergo transformation in the hydrothermal environment, as shown in the figure below. In this work the stability of a common support material γ-Al 2O 3 is examined at 500–700 °C and 246 bar. Supercritical water (above 374.1 °C and 220.6 bar) is emerging as a promising medium to carry out a variety of catalytic reactions, including reforming to produce hydrogen. However, when using a heterogeneous catalyst the support material can undergo transformations in the hydrothermal environment. In this work the stability of γ-Al 2O 3 modified with 1–10 wt% Ce in supercritical water is examined, specifically in the temperature range of 500–700 °C at 246 bar. Transformations of the γ-phase were slowed but not prevented. Based on X-ray analysis, the transformation of γ-Al 2O 3 proceeded through the κ phase toward the stable α phase. Reduced cerium species were seen to be oxidized in the supercritical water environment, and low Ce-loading supports maintained the highest BET surface areas. The stabilization was greatest at 700 °C, where Ce-modified aluminas retained significantly higher specific surface areas than unmodified alumina.</description><identifier>ISSN: 0926-860X</identifier><identifier>EISSN: 1873-3875</identifier><identifier>DOI: 10.1016/j.apcata.2010.04.006</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Alumina ; Aluminum oxide ; Catalysis ; Catalysts ; Cerium ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Hydrothermal ; Phase transformations ; Stability ; Stabilization ; Supercritical water ; Surface area ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Transformations</subject><ispartof>Applied catalysis. A, General, 2010-06, Vol.381 (1), p.177-182</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-58f215de448dad55c5dd233e8a6277bbd407e297bf1789bc4d5006d0aef0d3b23</citedby><cites>FETCH-LOGICAL-c368t-58f215de448dad55c5dd233e8a6277bbd407e297bf1789bc4d5006d0aef0d3b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcata.2010.04.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22861014$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Byrd, Adam J.</creatorcontrib><creatorcontrib>Gupta, Ram B.</creatorcontrib><title>Stability of cerium-modified γ-alumina catalyst support in supercritical water</title><title>Applied catalysis. A, General</title><description>Supercritical water is emerging as a promising medium to carry out a variety of catalytic reactions. However the support material can undergo transformation in the hydrothermal environment, as shown in the figure below. In this work the stability of a common support material γ-Al 2O 3 is examined at 500–700 °C and 246 bar. Supercritical water (above 374.1 °C and 220.6 bar) is emerging as a promising medium to carry out a variety of catalytic reactions, including reforming to produce hydrogen. However, when using a heterogeneous catalyst the support material can undergo transformations in the hydrothermal environment. In this work the stability of γ-Al 2O 3 modified with 1–10 wt% Ce in supercritical water is examined, specifically in the temperature range of 500–700 °C at 246 bar. Transformations of the γ-phase were slowed but not prevented. Based on X-ray analysis, the transformation of γ-Al 2O 3 proceeded through the κ phase toward the stable α phase. Reduced cerium species were seen to be oxidized in the supercritical water environment, and low Ce-loading supports maintained the highest BET surface areas. The stabilization was greatest at 700 °C, where Ce-modified aluminas retained significantly higher specific surface areas than unmodified alumina.</description><subject>Alumina</subject><subject>Aluminum oxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cerium</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrothermal</subject><subject>Phase transformations</subject><subject>Stability</subject><subject>Stabilization</subject><subject>Supercritical water</subject><subject>Surface area</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Transformations</subject><issn>0926-860X</issn><issn>1873-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKtv4GI24mpqJpO_bgQp_kGhCxXchUxyB1LmzySj9Ll8D5_JDC0uXd3L5Tv3cA5ClwVeFLjgN9uFHoyOekFwOmG6wJgfoVkhRZmXUrBjNMNLwnPJ8fspOgthizEmdMlmaPMSdeUaF3dZX2cGvBvbvO2tqx3Y7Oc7183Yuk5n0_9mF2IWxmHofcxcN63gjXfRGd1kXzqCP0cntW4CXBzmHL093L-unvL15vF5dbfOTcllzJmsScEsUCqttowZZi0pS5CaEyGqylIsgCxFVRdCLitDLUuZLNZQY1tWpJyj6_3fwfcfI4SoWhcMNI3uoB-DEqzklBdMJJLuSeP7EDzUavCu1X6nCqym-tRW7etTU30KU5WskuzqYKBDSld73RkX_rSESJ7ENHG3ew5S2k8HXgXjoDNgnQcTle3d_0a_Of2Jew</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Byrd, Adam J.</creator><creator>Gupta, Ram B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100615</creationdate><title>Stability of cerium-modified γ-alumina catalyst support in supercritical water</title><author>Byrd, Adam J. ; Gupta, Ram B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-58f215de448dad55c5dd233e8a6277bbd407e297bf1789bc4d5006d0aef0d3b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alumina</topic><topic>Aluminum oxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cerium</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrothermal</topic><topic>Phase transformations</topic><topic>Stability</topic><topic>Stabilization</topic><topic>Supercritical water</topic><topic>Surface area</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byrd, Adam J.</creatorcontrib><creatorcontrib>Gupta, Ram B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. A, General</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byrd, Adam J.</au><au>Gupta, Ram B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of cerium-modified γ-alumina catalyst support in supercritical water</atitle><jtitle>Applied catalysis. A, General</jtitle><date>2010-06-15</date><risdate>2010</risdate><volume>381</volume><issue>1</issue><spage>177</spage><epage>182</epage><pages>177-182</pages><issn>0926-860X</issn><eissn>1873-3875</eissn><abstract>Supercritical water is emerging as a promising medium to carry out a variety of catalytic reactions. However the support material can undergo transformation in the hydrothermal environment, as shown in the figure below. In this work the stability of a common support material γ-Al 2O 3 is examined at 500–700 °C and 246 bar. Supercritical water (above 374.1 °C and 220.6 bar) is emerging as a promising medium to carry out a variety of catalytic reactions, including reforming to produce hydrogen. However, when using a heterogeneous catalyst the support material can undergo transformations in the hydrothermal environment. In this work the stability of γ-Al 2O 3 modified with 1–10 wt% Ce in supercritical water is examined, specifically in the temperature range of 500–700 °C at 246 bar. Transformations of the γ-phase were slowed but not prevented. Based on X-ray analysis, the transformation of γ-Al 2O 3 proceeded through the κ phase toward the stable α phase. Reduced cerium species were seen to be oxidized in the supercritical water environment, and low Ce-loading supports maintained the highest BET surface areas. The stabilization was greatest at 700 °C, where Ce-modified aluminas retained significantly higher specific surface areas than unmodified alumina.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcata.2010.04.006</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-860X
ispartof Applied catalysis. A, General, 2010-06, Vol.381 (1), p.177-182
issn 0926-860X
1873-3875
language eng
recordid cdi_proquest_miscellaneous_753646157
source Elsevier ScienceDirect Journals Complete
subjects Alumina
Aluminum oxide
Catalysis
Catalysts
Cerium
Chemistry
Exact sciences and technology
General and physical chemistry
Hydrothermal
Phase transformations
Stability
Stabilization
Supercritical water
Surface area
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Transformations
title Stability of cerium-modified γ-alumina catalyst support in supercritical water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T15%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20cerium-modified%20%CE%B3-alumina%20catalyst%20support%20in%20supercritical%20water&rft.jtitle=Applied%20catalysis.%20A,%20General&rft.au=Byrd,%20Adam%20J.&rft.date=2010-06-15&rft.volume=381&rft.issue=1&rft.spage=177&rft.epage=182&rft.pages=177-182&rft.issn=0926-860X&rft.eissn=1873-3875&rft_id=info:doi/10.1016/j.apcata.2010.04.006&rft_dat=%3Cproquest_cross%3E753646157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753646157&rft_id=info:pmid/&rft_els_id=S0926860X1000267X&rfr_iscdi=true