Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo
Optical microangiography (OMAG) is a recently developed volumetric imaging technique that is capable of producing 3-D images of dynamic blood perfusion within microcirculatory tissue beds in vivo . The imaging contrast of OMAG image is based on the intrinsic optical scattering signals backscattered...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2010-05, Vol.16 (3), p.545-554 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 554 |
---|---|
container_issue | 3 |
container_start_page | 545 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 16 |
creator | Wang, Ruikang K |
description | Optical microangiography (OMAG) is a recently developed volumetric imaging technique that is capable of producing 3-D images of dynamic blood perfusion within microcirculatory tissue beds in vivo . The imaging contrast of OMAG image is based on the intrinsic optical scattering signals backscattered by the moving blood cells in patent blood vessels, thus, it is a label-free imaging technique. In this paper, I will first discuss its recent developments that use a constant modulation frequency introduced in the spectral interferograms to achieve the blood perfusion imaging. I will then introduce its latest development that utilizes the inherent blood flow to modulate the spectral interferograms to realize the blood perfusion imaging. Finally, examples of using OMAG to delineate the dynamic blood perfusion, down to capillary level resolution, within living tissues are given, including cortical blood perfusion in the brain of small animals and blood flow within human retina and choroids. |
doi_str_mv | 10.1109/JSTQE.2009.2033609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_753639928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5353635</ieee_id><sourcerecordid>2717076461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-d52361e432d866fd6895ea30c2281f51a883965b4817e7a64a2c4c17cb2370c13</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhlcVSAXaP1AuljhwWvD3erlBCm2qVAg1LdxWjnd2Y-TYwd6tFO7933UI4sDF48PzzIzmLYovBJ8RguvzH7_md9dnFOM6P4xJXH8oDogQquSC0738x1VVUokfPhaHKT1ijBVX-KD4d7serNEO_bQmBu17G_qo18vNBbpEM70AV95EAMTKr2i60r31PZqDWfrgQr9BQ0B_bBq1s8-AtG_R3aj9YLsNunIhtGhioxmdHmzwCd3bYWk9mtuURkBX0CY09dn_Gz4V-512CT6_1qPi9831fPK9nN1-m04uZ6XhSg5lKyiTBDijrZKya6WqBWiGDaWKdIJopVgtxYIrUkGlJdfUcEMqs6Cswoawo-J013cdw9MIaWhWNhlwTnsIY2oqwSSra6oyefKOfAxj9Hm5hmBaUcIU45miOyrfLqUIXbOOdqXjJkPNNpjmJZhmG0zzGkyWjneSBYA3QbDtbMH-A_uuiPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027213834</pqid></control><display><type>article</type><title>Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo</title><source>IEL</source><creator>Wang, Ruikang K</creator><creatorcontrib>Wang, Ruikang K</creatorcontrib><description>Optical microangiography (OMAG) is a recently developed volumetric imaging technique that is capable of producing 3-D images of dynamic blood perfusion within microcirculatory tissue beds in vivo . The imaging contrast of OMAG image is based on the intrinsic optical scattering signals backscattered by the moving blood cells in patent blood vessels, thus, it is a label-free imaging technique. In this paper, I will first discuss its recent developments that use a constant modulation frequency introduced in the spectral interferograms to achieve the blood perfusion imaging. I will then introduce its latest development that utilizes the inherent blood flow to modulate the spectral interferograms to realize the blood perfusion imaging. Finally, examples of using OMAG to delineate the dynamic blood perfusion, down to capillary level resolution, within living tissues are given, including cortical blood perfusion in the brain of small animals and blood flow within human retina and choroids.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2009.2033609</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Animals ; Biomedical imaging ; Biomedical materials ; Blood ; Blood flow ; Blood vessels ; Cells (biology) ; Cerebral blood flow (CBF) ; Fourier domain optical coherence tomography (FDOCT) ; Frequency modulation ; Image contrast ; Imaging ; In vivo ; microcirculation ; neurological disease models ; Optical imaging ; optical microangiography (OMAG) ; Optical scattering ; retinal blood flow ; Spectra ; Surgical implants ; Visualization</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2010-05, Vol.16 (3), p.545-554</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-d52361e432d866fd6895ea30c2281f51a883965b4817e7a64a2c4c17cb2370c13</citedby><cites>FETCH-LOGICAL-c486t-d52361e432d866fd6895ea30c2281f51a883965b4817e7a64a2c4c17cb2370c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5353635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5353635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ruikang K</creatorcontrib><title>Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Optical microangiography (OMAG) is a recently developed volumetric imaging technique that is capable of producing 3-D images of dynamic blood perfusion within microcirculatory tissue beds in vivo . The imaging contrast of OMAG image is based on the intrinsic optical scattering signals backscattered by the moving blood cells in patent blood vessels, thus, it is a label-free imaging technique. In this paper, I will first discuss its recent developments that use a constant modulation frequency introduced in the spectral interferograms to achieve the blood perfusion imaging. I will then introduce its latest development that utilizes the inherent blood flow to modulate the spectral interferograms to realize the blood perfusion imaging. Finally, examples of using OMAG to delineate the dynamic blood perfusion, down to capillary level resolution, within living tissues are given, including cortical blood perfusion in the brain of small animals and blood flow within human retina and choroids.</description><subject>Animals</subject><subject>Biomedical imaging</subject><subject>Biomedical materials</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Cells (biology)</subject><subject>Cerebral blood flow (CBF)</subject><subject>Fourier domain optical coherence tomography (FDOCT)</subject><subject>Frequency modulation</subject><subject>Image contrast</subject><subject>Imaging</subject><subject>In vivo</subject><subject>microcirculation</subject><subject>neurological disease models</subject><subject>Optical imaging</subject><subject>optical microangiography (OMAG)</subject><subject>Optical scattering</subject><subject>retinal blood flow</subject><subject>Spectra</subject><subject>Surgical implants</subject><subject>Visualization</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1PGzEQhlcVSAXaP1AuljhwWvD3erlBCm2qVAg1LdxWjnd2Y-TYwd6tFO7933UI4sDF48PzzIzmLYovBJ8RguvzH7_md9dnFOM6P4xJXH8oDogQquSC0738x1VVUokfPhaHKT1ijBVX-KD4d7serNEO_bQmBu17G_qo18vNBbpEM70AV95EAMTKr2i60r31PZqDWfrgQr9BQ0B_bBq1s8-AtG_R3aj9YLsNunIhtGhioxmdHmzwCd3bYWk9mtuURkBX0CY09dn_Gz4V-512CT6_1qPi9831fPK9nN1-m04uZ6XhSg5lKyiTBDijrZKya6WqBWiGDaWKdIJopVgtxYIrUkGlJdfUcEMqs6Cswoawo-J013cdw9MIaWhWNhlwTnsIY2oqwSSra6oyefKOfAxj9Hm5hmBaUcIU45miOyrfLqUIXbOOdqXjJkPNNpjmJZhmG0zzGkyWjneSBYA3QbDtbMH-A_uuiPs</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Wang, Ruikang K</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100501</creationdate><title>Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo</title><author>Wang, Ruikang K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-d52361e432d866fd6895ea30c2281f51a883965b4817e7a64a2c4c17cb2370c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biomedical imaging</topic><topic>Biomedical materials</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Cells (biology)</topic><topic>Cerebral blood flow (CBF)</topic><topic>Fourier domain optical coherence tomography (FDOCT)</topic><topic>Frequency modulation</topic><topic>Image contrast</topic><topic>Imaging</topic><topic>In vivo</topic><topic>microcirculation</topic><topic>neurological disease models</topic><topic>Optical imaging</topic><topic>optical microangiography (OMAG)</topic><topic>Optical scattering</topic><topic>retinal blood flow</topic><topic>Spectra</topic><topic>Surgical implants</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ruikang K</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ruikang K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>16</volume><issue>3</issue><spage>545</spage><epage>554</epage><pages>545-554</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Optical microangiography (OMAG) is a recently developed volumetric imaging technique that is capable of producing 3-D images of dynamic blood perfusion within microcirculatory tissue beds in vivo . The imaging contrast of OMAG image is based on the intrinsic optical scattering signals backscattered by the moving blood cells in patent blood vessels, thus, it is a label-free imaging technique. In this paper, I will first discuss its recent developments that use a constant modulation frequency introduced in the spectral interferograms to achieve the blood perfusion imaging. I will then introduce its latest development that utilizes the inherent blood flow to modulate the spectral interferograms to realize the blood perfusion imaging. Finally, examples of using OMAG to delineate the dynamic blood perfusion, down to capillary level resolution, within living tissues are given, including cortical blood perfusion in the brain of small animals and blood flow within human retina and choroids.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2009.2033609</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2010-05, Vol.16 (3), p.545-554 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_proquest_miscellaneous_753639928 |
source | IEL |
subjects | Animals Biomedical imaging Biomedical materials Blood Blood flow Blood vessels Cells (biology) Cerebral blood flow (CBF) Fourier domain optical coherence tomography (FDOCT) Frequency modulation Image contrast Imaging In vivo microcirculation neurological disease models Optical imaging optical microangiography (OMAG) Optical scattering retinal blood flow Spectra Surgical implants Visualization |
title | Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Microangiography:%20A%20Label-Free%203-D%20Imaging%20Technology%20to%20Visualize%20and%20Quantify%20Blood%20Circulations%20Within%20Tissue%20Beds%20In%20Vivo&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Wang,%20Ruikang%20K&rft.date=2010-05-01&rft.volume=16&rft.issue=3&rft.spage=545&rft.epage=554&rft.pages=545-554&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2009.2033609&rft_dat=%3Cproquest_RIE%3E2717076461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027213834&rft_id=info:pmid/&rft_ieee_id=5353635&rfr_iscdi=true |