Experimental investigation on the abrasive wear behavior of nanoclay-filled EVA/LDPE composites
The article presents the results of experimental investigation on three‐body abrasive wear behavior of nanoclay‐filled EVA/LDPE (NC‐EVA/LDPE) composites. NC‐EVA/LDPE composites with and without compatibilizer were prepared by Brabender Co‐Twin extruder (Make: CMEI, Model: 16CME, SPL) and poly(ethyle...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2010-03, Vol.31 (3), p.426-433 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The article presents the results of experimental investigation on three‐body abrasive wear behavior of nanoclay‐filled EVA/LDPE (NC‐EVA/LDPE) composites. NC‐EVA/LDPE composites with and without compatibilizer were prepared by Brabender Co‐Twin extruder (Make: CMEI, Model: 16CME, SPL) and poly(ethylene‐co‐glycidyl methacrylate) was used as the compatibilizer. The mechanical properties were evaluated using Universal testing machine. In three‐body wear tests, silica sand particles of size 200–250 μm were used as dry and loose abrasives. Three‐body abrasive wear studies were carried out using dry sand/rubber wheel abrasion test rig. The effect of abrading distance on the abrasive wear behavior of neat EVA, EVA/LDPE, and NC‐EVA/LDPE composites was reported. The results showed that the wear volume loss is increased with increase in abrading distance and the specific wear rate decreased with increase in abrading distance. However, the presence of nanoclay filler in EVA/LDPE composite showed a promising trend. Abrasive wear volume of the composites was correlated with mechanical properties such as hardness, tensile strength, and percentage elongation. However, higher weight percentage of LDPE in EVA increased the wear rate. The results indicate that NC‐EVA/LDPE with compatibilizer composite exhibits good abrasive wear resistance compared with NC‐EVA/LDPE without compatibilizer. Attempts to explain these differing trends are made in this work by analyzing the features observed on the worn surface samples by employing scanning electron microscopy (SEM). POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers |
---|---|
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.20821 |