Group-theoretic exploitations of symmetry in computational solid and structural mechanics

The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2009-07, Vol.79 (3), p.253-289
1. Verfasser: Zingoni, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 3
container_start_page 253
container_title International journal for numerical methods in engineering
container_volume 79
creator Zingoni, A.
description The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more efficient strategies for exploiting symmetry in the computational problems of solid and structural mechanics has led to the development of group‐theoretic methods over the past 40 years. This paper reviews the advances made in the application of group theory in areas such as bifurcation analysis, vibration analysis and finite element analysis, and summarizes the various implementation procedures currently available. Illustrative examples of typical solution procedures are drawn from recent work of the author. It is shown how the group‐theoretic approach, through the characteristic vector‐space decomposition, enables considerable simplifications and reductions in computational effort to be achieved. In many cases, group‐theoretic considerations also allow valuable insights on the behaviour or properties of a system to be gained, before any actual calculations are carried out. Copyright © 2009 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.2576
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753628560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753628560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4316-2c5d9fba680f4460ef0979fc973adf452eda244e7c9e921190b63bddb624e75d3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKfgT-hF9NKZpE2yHEXcFOe8qMNTyNIvGG2bmqTo_r2VDW-ePnjfh4ePF6FTgicEY3rZNjChTPA9NCJYihxTLPbRaKhkzuSUHKKjGN8xJoThYoRe58H3XZ7ewAdIzmTw3dXeJZ2cb2PmbRY3TQMpbDLXZsY3Xb_tdJ1FX7sq022VxRR6k_owhA2YN906E4_RgdV1hJPdHaPn2c3T9W2-eJzfXV8tclMWhOfUsErateZTbMuSY7DD19IaKQpd2ZJRqDQtSxBGgqSESLzmxbqq1pwOIauKMTrfervgP3uISTUuGqhr3YLvoxKs4HTKOB7Iiy1pgo8xgFVdcI0OG0Ww-h1PDeOp3_EG9Gwn1dHo2gbdGhf_eEo4l1MhBy7fcl-uhs2_PrV8uNl5d7yLCb7_eB0-FBeFYGq1nKvZcrFiL_czJYofimmOiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753628560</pqid></control><display><type>article</type><title>Group-theoretic exploitations of symmetry in computational solid and structural mechanics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zingoni, A.</creator><creatorcontrib>Zingoni, A.</creatorcontrib><description>The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more efficient strategies for exploiting symmetry in the computational problems of solid and structural mechanics has led to the development of group‐theoretic methods over the past 40 years. This paper reviews the advances made in the application of group theory in areas such as bifurcation analysis, vibration analysis and finite element analysis, and summarizes the various implementation procedures currently available. Illustrative examples of typical solution procedures are drawn from recent work of the author. It is shown how the group‐theoretic approach, through the characteristic vector‐space decomposition, enables considerable simplifications and reductions in computational effort to be achieved. In many cases, group‐theoretic considerations also allow valuable insights on the behaviour or properties of a system to be gained, before any actual calculations are carried out. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2576</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>bifurcation analysis ; Computation ; Computational techniques ; Exact sciences and technology ; finite element formulation ; finite element methods ; Fundamental areas of phenomenology (including applications) ; Group theory ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Physics ; representation theory ; Simplification ; Solid mechanics ; Strategy ; Structural and continuum mechanics ; structural mechanics ; structures ; Symmetry ; symmetry group ; Vibration analysis ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; vibrations</subject><ispartof>International journal for numerical methods in engineering, 2009-07, Vol.79 (3), p.253-289</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4316-2c5d9fba680f4460ef0979fc973adf452eda244e7c9e921190b63bddb624e75d3</citedby><cites>FETCH-LOGICAL-c4316-2c5d9fba680f4460ef0979fc973adf452eda244e7c9e921190b63bddb624e75d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2576$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2576$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21669879$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zingoni, A.</creatorcontrib><title>Group-theoretic exploitations of symmetry in computational solid and structural mechanics</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more efficient strategies for exploiting symmetry in the computational problems of solid and structural mechanics has led to the development of group‐theoretic methods over the past 40 years. This paper reviews the advances made in the application of group theory in areas such as bifurcation analysis, vibration analysis and finite element analysis, and summarizes the various implementation procedures currently available. Illustrative examples of typical solution procedures are drawn from recent work of the author. It is shown how the group‐theoretic approach, through the characteristic vector‐space decomposition, enables considerable simplifications and reductions in computational effort to be achieved. In many cases, group‐theoretic considerations also allow valuable insights on the behaviour or properties of a system to be gained, before any actual calculations are carried out. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><subject>bifurcation analysis</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>finite element formulation</subject><subject>finite element methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>representation theory</subject><subject>Simplification</subject><subject>Solid mechanics</subject><subject>Strategy</subject><subject>Structural and continuum mechanics</subject><subject>structural mechanics</subject><subject>structures</subject><subject>Symmetry</subject><subject>symmetry group</subject><subject>Vibration analysis</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>vibrations</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKfgT-hF9NKZpE2yHEXcFOe8qMNTyNIvGG2bmqTo_r2VDW-ePnjfh4ePF6FTgicEY3rZNjChTPA9NCJYihxTLPbRaKhkzuSUHKKjGN8xJoThYoRe58H3XZ7ewAdIzmTw3dXeJZ2cb2PmbRY3TQMpbDLXZsY3Xb_tdJ1FX7sq022VxRR6k_owhA2YN906E4_RgdV1hJPdHaPn2c3T9W2-eJzfXV8tclMWhOfUsErateZTbMuSY7DD19IaKQpd2ZJRqDQtSxBGgqSESLzmxbqq1pwOIauKMTrfervgP3uISTUuGqhr3YLvoxKs4HTKOB7Iiy1pgo8xgFVdcI0OG0Ww-h1PDeOp3_EG9Gwn1dHo2gbdGhf_eEo4l1MhBy7fcl-uhs2_PrV8uNl5d7yLCb7_eB0-FBeFYGq1nKvZcrFiL_czJYofimmOiw</recordid><startdate>20090716</startdate><enddate>20090716</enddate><creator>Zingoni, A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090716</creationdate><title>Group-theoretic exploitations of symmetry in computational solid and structural mechanics</title><author>Zingoni, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4316-2c5d9fba680f4460ef0979fc973adf452eda244e7c9e921190b63bddb624e75d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>bifurcation analysis</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>finite element formulation</topic><topic>finite element methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>representation theory</topic><topic>Simplification</topic><topic>Solid mechanics</topic><topic>Strategy</topic><topic>Structural and continuum mechanics</topic><topic>structural mechanics</topic><topic>structures</topic><topic>Symmetry</topic><topic>symmetry group</topic><topic>Vibration analysis</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zingoni, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zingoni, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group-theoretic exploitations of symmetry in computational solid and structural mechanics</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2009-07-16</date><risdate>2009</risdate><volume>79</volume><issue>3</issue><spage>253</spage><epage>289</epage><pages>253-289</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more efficient strategies for exploiting symmetry in the computational problems of solid and structural mechanics has led to the development of group‐theoretic methods over the past 40 years. This paper reviews the advances made in the application of group theory in areas such as bifurcation analysis, vibration analysis and finite element analysis, and summarizes the various implementation procedures currently available. Illustrative examples of typical solution procedures are drawn from recent work of the author. It is shown how the group‐theoretic approach, through the characteristic vector‐space decomposition, enables considerable simplifications and reductions in computational effort to be achieved. In many cases, group‐theoretic considerations also allow valuable insights on the behaviour or properties of a system to be gained, before any actual calculations are carried out. Copyright © 2009 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.2576</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2009-07, Vol.79 (3), p.253-289
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_753628560
source Wiley Online Library Journals Frontfile Complete
subjects bifurcation analysis
Computation
Computational techniques
Exact sciences and technology
finite element formulation
finite element methods
Fundamental areas of phenomenology (including applications)
Group theory
Mathematical analysis
Mathematical methods in physics
Mathematical models
Physics
representation theory
Simplification
Solid mechanics
Strategy
Structural and continuum mechanics
structural mechanics
structures
Symmetry
symmetry group
Vibration analysis
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
vibrations
title Group-theoretic exploitations of symmetry in computational solid and structural mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group-theoretic%20exploitations%20of%20symmetry%20in%20computational%20solid%20and%20structural%20mechanics&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Zingoni,%20A.&rft.date=2009-07-16&rft.volume=79&rft.issue=3&rft.spage=253&rft.epage=289&rft.pages=253-289&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2576&rft_dat=%3Cproquest_cross%3E753628560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753628560&rft_id=info:pmid/&rfr_iscdi=true