Group-theoretic exploitations of symmetry in computational solid and structural mechanics
The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2009-07, Vol.79 (3), p.253-289 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 3 |
container_start_page | 253 |
container_title | International journal for numerical methods in engineering |
container_volume | 79 |
creator | Zingoni, A. |
description | The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more efficient strategies for exploiting symmetry in the computational problems of solid and structural mechanics has led to the development of group‐theoretic methods over the past 40 years. This paper reviews the advances made in the application of group theory in areas such as bifurcation analysis, vibration analysis and finite element analysis, and summarizes the various implementation procedures currently available. Illustrative examples of typical solution procedures are drawn from recent work of the author. It is shown how the group‐theoretic approach, through the characteristic vector‐space decomposition, enables considerable simplifications and reductions in computational effort to be achieved. In many cases, group‐theoretic considerations also allow valuable insights on the behaviour or properties of a system to be gained, before any actual calculations are carried out. Copyright © 2009 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.2576 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753628560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753628560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4316-2c5d9fba680f4460ef0979fc973adf452eda244e7c9e921190b63bddb624e75d3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKfgT-hF9NKZpE2yHEXcFOe8qMNTyNIvGG2bmqTo_r2VDW-ePnjfh4ePF6FTgicEY3rZNjChTPA9NCJYihxTLPbRaKhkzuSUHKKjGN8xJoThYoRe58H3XZ7ewAdIzmTw3dXeJZ2cb2PmbRY3TQMpbDLXZsY3Xb_tdJ1FX7sq022VxRR6k_owhA2YN906E4_RgdV1hJPdHaPn2c3T9W2-eJzfXV8tclMWhOfUsErateZTbMuSY7DD19IaKQpd2ZJRqDQtSxBGgqSESLzmxbqq1pwOIauKMTrfervgP3uISTUuGqhr3YLvoxKs4HTKOB7Iiy1pgo8xgFVdcI0OG0Ww-h1PDeOp3_EG9Gwn1dHo2gbdGhf_eEo4l1MhBy7fcl-uhs2_PrV8uNl5d7yLCb7_eB0-FBeFYGq1nKvZcrFiL_czJYofimmOiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753628560</pqid></control><display><type>article</type><title>Group-theoretic exploitations of symmetry in computational solid and structural mechanics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zingoni, A.</creator><creatorcontrib>Zingoni, A.</creatorcontrib><description>The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more efficient strategies for exploiting symmetry in the computational problems of solid and structural mechanics has led to the development of group‐theoretic methods over the past 40 years. This paper reviews the advances made in the application of group theory in areas such as bifurcation analysis, vibration analysis and finite element analysis, and summarizes the various implementation procedures currently available. Illustrative examples of typical solution procedures are drawn from recent work of the author. It is shown how the group‐theoretic approach, through the characteristic vector‐space decomposition, enables considerable simplifications and reductions in computational effort to be achieved. In many cases, group‐theoretic considerations also allow valuable insights on the behaviour or properties of a system to be gained, before any actual calculations are carried out. Copyright © 2009 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2576</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>bifurcation analysis ; Computation ; Computational techniques ; Exact sciences and technology ; finite element formulation ; finite element methods ; Fundamental areas of phenomenology (including applications) ; Group theory ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Physics ; representation theory ; Simplification ; Solid mechanics ; Strategy ; Structural and continuum mechanics ; structural mechanics ; structures ; Symmetry ; symmetry group ; Vibration analysis ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; vibrations</subject><ispartof>International journal for numerical methods in engineering, 2009-07, Vol.79 (3), p.253-289</ispartof><rights>Copyright © 2009 John Wiley & Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4316-2c5d9fba680f4460ef0979fc973adf452eda244e7c9e921190b63bddb624e75d3</citedby><cites>FETCH-LOGICAL-c4316-2c5d9fba680f4460ef0979fc973adf452eda244e7c9e921190b63bddb624e75d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2576$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2576$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21669879$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zingoni, A.</creatorcontrib><title>Group-theoretic exploitations of symmetry in computational solid and structural mechanics</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more efficient strategies for exploiting symmetry in the computational problems of solid and structural mechanics has led to the development of group‐theoretic methods over the past 40 years. This paper reviews the advances made in the application of group theory in areas such as bifurcation analysis, vibration analysis and finite element analysis, and summarizes the various implementation procedures currently available. Illustrative examples of typical solution procedures are drawn from recent work of the author. It is shown how the group‐theoretic approach, through the characteristic vector‐space decomposition, enables considerable simplifications and reductions in computational effort to be achieved. In many cases, group‐theoretic considerations also allow valuable insights on the behaviour or properties of a system to be gained, before any actual calculations are carried out. Copyright © 2009 John Wiley & Sons, Ltd.</description><subject>bifurcation analysis</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>finite element formulation</subject><subject>finite element methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>representation theory</subject><subject>Simplification</subject><subject>Solid mechanics</subject><subject>Strategy</subject><subject>Structural and continuum mechanics</subject><subject>structural mechanics</subject><subject>structures</subject><subject>Symmetry</subject><subject>symmetry group</subject><subject>Vibration analysis</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>vibrations</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKfgT-hF9NKZpE2yHEXcFOe8qMNTyNIvGG2bmqTo_r2VDW-ePnjfh4ePF6FTgicEY3rZNjChTPA9NCJYihxTLPbRaKhkzuSUHKKjGN8xJoThYoRe58H3XZ7ewAdIzmTw3dXeJZ2cb2PmbRY3TQMpbDLXZsY3Xb_tdJ1FX7sq022VxRR6k_owhA2YN906E4_RgdV1hJPdHaPn2c3T9W2-eJzfXV8tclMWhOfUsErateZTbMuSY7DD19IaKQpd2ZJRqDQtSxBGgqSESLzmxbqq1pwOIauKMTrfervgP3uISTUuGqhr3YLvoxKs4HTKOB7Iiy1pgo8xgFVdcI0OG0Ww-h1PDeOp3_EG9Gwn1dHo2gbdGhf_eEo4l1MhBy7fcl-uhs2_PrV8uNl5d7yLCb7_eB0-FBeFYGq1nKvZcrFiL_czJYofimmOiw</recordid><startdate>20090716</startdate><enddate>20090716</enddate><creator>Zingoni, A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090716</creationdate><title>Group-theoretic exploitations of symmetry in computational solid and structural mechanics</title><author>Zingoni, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4316-2c5d9fba680f4460ef0979fc973adf452eda244e7c9e921190b63bddb624e75d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>bifurcation analysis</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>finite element formulation</topic><topic>finite element methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>representation theory</topic><topic>Simplification</topic><topic>Solid mechanics</topic><topic>Strategy</topic><topic>Structural and continuum mechanics</topic><topic>structural mechanics</topic><topic>structures</topic><topic>Symmetry</topic><topic>symmetry group</topic><topic>Vibration analysis</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zingoni, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zingoni, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group-theoretic exploitations of symmetry in computational solid and structural mechanics</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2009-07-16</date><risdate>2009</risdate><volume>79</volume><issue>3</issue><spage>253</spage><epage>289</epage><pages>253-289</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The use of group theory in simplifying the study of problems involving symmetry is a well‐established approach in various branches of physics and chemistry, and major applications in these areas date back more than 70 years. Within the engineering disciplines, the search for more systematic and more efficient strategies for exploiting symmetry in the computational problems of solid and structural mechanics has led to the development of group‐theoretic methods over the past 40 years. This paper reviews the advances made in the application of group theory in areas such as bifurcation analysis, vibration analysis and finite element analysis, and summarizes the various implementation procedures currently available. Illustrative examples of typical solution procedures are drawn from recent work of the author. It is shown how the group‐theoretic approach, through the characteristic vector‐space decomposition, enables considerable simplifications and reductions in computational effort to be achieved. In many cases, group‐theoretic considerations also allow valuable insights on the behaviour or properties of a system to be gained, before any actual calculations are carried out. Copyright © 2009 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.2576</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2009-07, Vol.79 (3), p.253-289 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_753628560 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bifurcation analysis Computation Computational techniques Exact sciences and technology finite element formulation finite element methods Fundamental areas of phenomenology (including applications) Group theory Mathematical analysis Mathematical methods in physics Mathematical models Physics representation theory Simplification Solid mechanics Strategy Structural and continuum mechanics structural mechanics structures Symmetry symmetry group Vibration analysis Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) vibrations |
title | Group-theoretic exploitations of symmetry in computational solid and structural mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group-theoretic%20exploitations%20of%20symmetry%20in%20computational%20solid%20and%20structural%20mechanics&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Zingoni,%20A.&rft.date=2009-07-16&rft.volume=79&rft.issue=3&rft.spage=253&rft.epage=289&rft.pages=253-289&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2576&rft_dat=%3Cproquest_cross%3E753628560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753628560&rft_id=info:pmid/&rfr_iscdi=true |