ANFIS: Self-tuning Fuzzy PD Controller for Twin Rotor MIMO System
This work presents a self‐tuning fuzzy PD controller for solving the control challenges of twin rotor MIMO system. The controller is made adaptive through output scaling factor adjustment of the updating factor, α. The value of α is calculated directly from a fuzzy rule base defined as error and cha...
Gespeichert in:
Veröffentlicht in: | IEEJ transactions on electrical and electronic engineering 2010-05, Vol.5 (3), p.369-371 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 371 |
---|---|
container_issue | 3 |
container_start_page | 369 |
container_title | IEEJ transactions on electrical and electronic engineering |
container_volume | 5 |
creator | Mahmoud, Thair S. Marhaban, Mohammad H. Hong, Tang S. |
description | This work presents a self‐tuning fuzzy PD controller for solving the control challenges of twin rotor MIMO system. The controller is made adaptive through output scaling factor adjustment of the updating factor, α. The value of α is calculated directly from a fuzzy rule base defined as error and change of error of the controlled variable. A combination of adaptive neural fuzzy inference system and fuzzy subtractive clustering method was used, where the objective was to improve its time response, while reducing its computational complexity. Simulation results show performance improvement in comparison with that of the previous method. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. |
doi_str_mv | 10.1002/tee.20543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_753628054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753628054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4033-d73af4339d9bf864d24dd27d5887a793ab7c3aed8403854f51a36c25501199c73</originalsourceid><addsrcrecordid>eNp1kM9PwjAYhhujiYge_A92Mx4G7b527byRCUjCDwMzHpuydWY6Nmy34PjrHaLcPH3v4Xm-5H0RuiW4RzD2-pXWPQ8zCmeoQwIgLg0EOT9lDpfoytp3jKkPQnTQYDAfTVYPzkrnqVvVRVa8OaN6v2-c50cnLIvKlHmujZOWxol2WeEsy6qNs8ls4awaW-nNNbpIVW71ze_topfRMAqf3OliPAkHUzemGMBNOKiUAgRJsE6FTxOPJonHEyYEVzwAteYxKJ2IlhaMpowo8GOPMUxIEMQcuuju-Hdrys9a20puMhvrPFeFLmsrOQPfE4fqXXR_JGNTWmt0Krcm2yjTSILlYSXZriR_VmrZ_pHdZblu_gdlNBz-Ge7RyNr2XydDmQ_pc-BMvs7HMsIhXXpzXy7hGzixdTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753628054</pqid></control><display><type>article</type><title>ANFIS: Self-tuning Fuzzy PD Controller for Twin Rotor MIMO System</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mahmoud, Thair S. ; Marhaban, Mohammad H. ; Hong, Tang S.</creator><creatorcontrib>Mahmoud, Thair S. ; Marhaban, Mohammad H. ; Hong, Tang S.</creatorcontrib><description>This work presents a self‐tuning fuzzy PD controller for solving the control challenges of twin rotor MIMO system. The controller is made adaptive through output scaling factor adjustment of the updating factor, α. The value of α is calculated directly from a fuzzy rule base defined as error and change of error of the controlled variable. A combination of adaptive neural fuzzy inference system and fuzzy subtractive clustering method was used, where the objective was to improve its time response, while reducing its computational complexity. Simulation results show performance improvement in comparison with that of the previous method. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.20543</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adaptive systems ; ANFIS ; Control systems ; Errors ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; fuzzy subtractive clustering method ; Inference ; Rotors ; self-tuning fuzzy PD controller ; twin rotor MIMO system</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2010-05, Vol.5 (3), p.369-371</ispartof><rights>Copyright © 2010 Institute of Electrical Engineers of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4033-d73af4339d9bf864d24dd27d5887a793ab7c3aed8403854f51a36c25501199c73</citedby><cites>FETCH-LOGICAL-c4033-d73af4339d9bf864d24dd27d5887a793ab7c3aed8403854f51a36c25501199c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.20543$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.20543$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Mahmoud, Thair S.</creatorcontrib><creatorcontrib>Marhaban, Mohammad H.</creatorcontrib><creatorcontrib>Hong, Tang S.</creatorcontrib><title>ANFIS: Self-tuning Fuzzy PD Controller for Twin Rotor MIMO System</title><title>IEEJ transactions on electrical and electronic engineering</title><addtitle>IEEJ Trans Elec Electron Eng</addtitle><description>This work presents a self‐tuning fuzzy PD controller for solving the control challenges of twin rotor MIMO system. The controller is made adaptive through output scaling factor adjustment of the updating factor, α. The value of α is calculated directly from a fuzzy rule base defined as error and change of error of the controlled variable. A combination of adaptive neural fuzzy inference system and fuzzy subtractive clustering method was used, where the objective was to improve its time response, while reducing its computational complexity. Simulation results show performance improvement in comparison with that of the previous method. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</description><subject>Adaptive systems</subject><subject>ANFIS</subject><subject>Control systems</subject><subject>Errors</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>fuzzy subtractive clustering method</subject><subject>Inference</subject><subject>Rotors</subject><subject>self-tuning fuzzy PD controller</subject><subject>twin rotor MIMO system</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwjAYhhujiYge_A92Mx4G7b527byRCUjCDwMzHpuydWY6Nmy34PjrHaLcPH3v4Xm-5H0RuiW4RzD2-pXWPQ8zCmeoQwIgLg0EOT9lDpfoytp3jKkPQnTQYDAfTVYPzkrnqVvVRVa8OaN6v2-c50cnLIvKlHmujZOWxol2WeEsy6qNs8ls4awaW-nNNbpIVW71ze_topfRMAqf3OliPAkHUzemGMBNOKiUAgRJsE6FTxOPJonHEyYEVzwAteYxKJ2IlhaMpowo8GOPMUxIEMQcuuju-Hdrys9a20puMhvrPFeFLmsrOQPfE4fqXXR_JGNTWmt0Krcm2yjTSILlYSXZriR_VmrZ_pHdZblu_gdlNBz-Ge7RyNr2XydDmQ_pc-BMvs7HMsIhXXpzXy7hGzixdTs</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Mahmoud, Thair S.</creator><creator>Marhaban, Mohammad H.</creator><creator>Hong, Tang S.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201005</creationdate><title>ANFIS: Self-tuning Fuzzy PD Controller for Twin Rotor MIMO System</title><author>Mahmoud, Thair S. ; Marhaban, Mohammad H. ; Hong, Tang S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4033-d73af4339d9bf864d24dd27d5887a793ab7c3aed8403854f51a36c25501199c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive systems</topic><topic>ANFIS</topic><topic>Control systems</topic><topic>Errors</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>fuzzy subtractive clustering method</topic><topic>Inference</topic><topic>Rotors</topic><topic>self-tuning fuzzy PD controller</topic><topic>twin rotor MIMO system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmoud, Thair S.</creatorcontrib><creatorcontrib>Marhaban, Mohammad H.</creatorcontrib><creatorcontrib>Hong, Tang S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmoud, Thair S.</au><au>Marhaban, Mohammad H.</au><au>Hong, Tang S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANFIS: Self-tuning Fuzzy PD Controller for Twin Rotor MIMO System</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><addtitle>IEEJ Trans Elec Electron Eng</addtitle><date>2010-05</date><risdate>2010</risdate><volume>5</volume><issue>3</issue><spage>369</spage><epage>371</epage><pages>369-371</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>This work presents a self‐tuning fuzzy PD controller for solving the control challenges of twin rotor MIMO system. The controller is made adaptive through output scaling factor adjustment of the updating factor, α. The value of α is calculated directly from a fuzzy rule base defined as error and change of error of the controlled variable. A combination of adaptive neural fuzzy inference system and fuzzy subtractive clustering method was used, where the objective was to improve its time response, while reducing its computational complexity. Simulation results show performance improvement in comparison with that of the previous method. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/tee.20543</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-4973 |
ispartof | IEEJ transactions on electrical and electronic engineering, 2010-05, Vol.5 (3), p.369-371 |
issn | 1931-4973 1931-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_753628054 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adaptive systems ANFIS Control systems Errors Fuzzy Fuzzy logic Fuzzy set theory fuzzy subtractive clustering method Inference Rotors self-tuning fuzzy PD controller twin rotor MIMO system |
title | ANFIS: Self-tuning Fuzzy PD Controller for Twin Rotor MIMO System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANFIS:%20Self-tuning%20Fuzzy%20PD%20Controller%20for%20Twin%20Rotor%20MIMO%20System&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Mahmoud,%20Thair%20S.&rft.date=2010-05&rft.volume=5&rft.issue=3&rft.spage=369&rft.epage=371&rft.pages=369-371&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.20543&rft_dat=%3Cproquest_cross%3E753628054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753628054&rft_id=info:pmid/&rfr_iscdi=true |