The ESTRO Breur Lecture 2009. From population to voxel-based radiotherapy: Exploiting intra-tumour and intra-organ heterogeneity for advanced treatment of non-small cell lung cancer
Abstract Evidence is accumulating that radiotherapy of non-small cell lung cancer patients can be optimized by escalating the tumour dose until the normal tissue tolerances are met. To further improve the therapeutic ratio between tumour control probability and the risk of normal tissue complication...
Gespeichert in:
Veröffentlicht in: | Radiotherapy and oncology 2010-08, Vol.96 (2), p.145-152 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Evidence is accumulating that radiotherapy of non-small cell lung cancer patients can be optimized by escalating the tumour dose until the normal tissue tolerances are met. To further improve the therapeutic ratio between tumour control probability and the risk of normal tissue complications, we firstly need to exploit inter patient variation. This variation arises, e.g. from differences in tumour shape and size, lung function and genetic factors. Secondly improvement is achieved by taking into account intra- tumour and intra- organ heterogeneity derived from molecular and functional imaging. Additional radiation dose must be delivered to those parts of the tumour that need it the most, e.g. because of increased radio-resistance or reduced therapeutic drug uptake, and away from regions inside the lung that are most prone to complication. As the delivery of these treatments plans is very sensitive for geometrical uncertainties, probabilistic treatment planning is needed to generate robust treatment plans. The administration of these complicated dose distributions requires a quality assurance procedure that can evaluate the treatment delivery and, if necessary, adapt the treatment plan during radiotherapy. |
---|---|
ISSN: | 0167-8140 1879-0887 |
DOI: | 10.1016/j.radonc.2010.07.001 |