Novel Hysteretic Noisy Chaotic Neural Network for Broadcast Scheduling Problems in Packet Radio Networks
Noisy chaotic neural network (NCNN), which can exhibit stochastic chaotic simulated annealing (SCSA), has been proven to be a powerful tool in solving combinatorial optimization problems. In order to retain the excellent optimization property of SCSA and improve the optimization performance of the N...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2010-09, Vol.21 (9), p.1422-1433 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Noisy chaotic neural network (NCNN), which can exhibit stochastic chaotic simulated annealing (SCSA), has been proven to be a powerful tool in solving combinatorial optimization problems. In order to retain the excellent optimization property of SCSA and improve the optimization performance of the NCNN using hysteretic dynamics without increasing network parameters, we first construct an equivalent model of the NCNN and then control noises in the equivalent model to propose a novel hysteretic noisy chaotic neural network (HNCNN). Compared with the NCNN, the proposed HNCNN can exhibit both SCSA and hysteretic dynamics without introducing extra system parameters, and can increase the effective convergence toward optimal or near-optimal solutions at higher noise levels. Broadcast scheduling problem (BSP) in packet radio networks (PRNs) is to design an optimal time-division multiple-access (TDMA) frame structure with minimal frame length, maximal channel utilization, and minimal average time delay. In this paper, the proposed HNCNN is applied to solve BSP in PRNs to demonstrate its performance. Simulation results show that the proposed HNCNN with higher noise amplitudes is more likely to find an optimal or near-optimal TDMA frame structure with a minimal average time delay than previous algorithms. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2010.2059041 |