Structure and Dynamics of the Chromate Ion in Aqueous Solution. An ab Initio QMCF-MD Simulation

An ab initio quantum-mechanical charge-field molecular-dynamics (QMCF-MD) simulation of the chromate ion in aqueous solution at ambient temperature was performed to study the structure and dynamics of this ion and its hydration shell. In contrast to conventional quantum-mechanical molecular-mechanic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2010-09, Vol.49 (17), p.7964-7968
Hauptverfasser: Hinteregger, Ernst, Pribil, Andreas B, Hofer, Thomas S, Randolf, Bernhard R, Weiss, Alexander K. H, Rode, Bernd M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7968
container_issue 17
container_start_page 7964
container_title Inorganic chemistry
container_volume 49
creator Hinteregger, Ernst
Pribil, Andreas B
Hofer, Thomas S
Randolf, Bernhard R
Weiss, Alexander K. H
Rode, Bernd M
description An ab initio quantum-mechanical charge-field molecular-dynamics (QMCF-MD) simulation of the chromate ion in aqueous solution at ambient temperature was performed to study the structure and dynamics of this ion and its hydration shell. In contrast to conventional quantum-mechanical molecular-mechanics molecular-dynamics (QM/MM-MD) simulations, the QMCF-MD approach offers the possibility of investigating composite systems with the accuracy of a QM/MM method but without the time-consuming construction of solute−solvent potential functions. The data of the simulation give a clear picture of the first hydration shell of the chromate anion, which consists of 14 water molecules. The mean distance between the oxygen atoms of the chromate and the hydrogen atoms of water is 1.82 Å. Each chromate oxygen atom is in average coordinated to 2.6 water molecules. The first-shell mean ligand residence time was evalulated as 2.2 ps; the vibrational frequency of the νOH mode was found to be 185 cm−1. Several structural parameters such as the radial distribution functions, angular distribution functions, and coordination number distributions enable a full characterization of the embedding of the chromate ion in the solvent water. The dynamics of the hydration structure are described by mean residence times of the water molecules in the first hydration shell, distance plots, and velocity autocorrelation functions.
doi_str_mv 10.1021/ic101001e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_749008888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>749008888</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-b2644ea13baabaf698df5847e65aef9b3b4e5bc4050c787d76c3d0265f0cfc23</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EoqUw8AeQF4QYUs6J4zRjlVKo1AqhdmCzHMdWUyU22MnQf4-rlk7ccnfSp6f3HkL3BMYEYvJSSwIEgKgLNCRpDFFK4OsSDQHCTRjLB-jG-x0A5All12gQQwY0YWSI-Lpzvex6p7AwFZ7tjWhr6bHVuNsqXGydbUWn8MIaXBs8_emV7T1e26bvamvGeGqwKPHC1OHFn6tiHq1meF23fSMOwC260qLx6u60R2gzf90U79Hy421RTJeRSAjtojJmlCpBklKIUmiWTyqdTmimWCqUzsukpCotJYUUZDbJqozJpIKYpRqklnEyQk9H2W9ng0Xf8bb2UjWNMAe_PKM5wCRMIJ-PpHTWe6c0_3Z1K9yeE-CHNvm5zcA-nFT7slXVmfyrLwCPR0BIz3e2dyZk_EfoF4tOepk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749008888</pqid></control><display><type>article</type><title>Structure and Dynamics of the Chromate Ion in Aqueous Solution. An ab Initio QMCF-MD Simulation</title><source>ACS Publications</source><creator>Hinteregger, Ernst ; Pribil, Andreas B ; Hofer, Thomas S ; Randolf, Bernhard R ; Weiss, Alexander K. H ; Rode, Bernd M</creator><creatorcontrib>Hinteregger, Ernst ; Pribil, Andreas B ; Hofer, Thomas S ; Randolf, Bernhard R ; Weiss, Alexander K. H ; Rode, Bernd M</creatorcontrib><description>An ab initio quantum-mechanical charge-field molecular-dynamics (QMCF-MD) simulation of the chromate ion in aqueous solution at ambient temperature was performed to study the structure and dynamics of this ion and its hydration shell. In contrast to conventional quantum-mechanical molecular-mechanics molecular-dynamics (QM/MM-MD) simulations, the QMCF-MD approach offers the possibility of investigating composite systems with the accuracy of a QM/MM method but without the time-consuming construction of solute−solvent potential functions. The data of the simulation give a clear picture of the first hydration shell of the chromate anion, which consists of 14 water molecules. The mean distance between the oxygen atoms of the chromate and the hydrogen atoms of water is 1.82 Å. Each chromate oxygen atom is in average coordinated to 2.6 water molecules. The first-shell mean ligand residence time was evalulated as 2.2 ps; the vibrational frequency of the νOH mode was found to be 185 cm−1. Several structural parameters such as the radial distribution functions, angular distribution functions, and coordination number distributions enable a full characterization of the embedding of the chromate ion in the solvent water. The dynamics of the hydration structure are described by mean residence times of the water molecules in the first hydration shell, distance plots, and velocity autocorrelation functions.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic101001e</identifier><identifier>PMID: 20704361</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2010-09, Vol.49 (17), p.7964-7968</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-b2644ea13baabaf698df5847e65aef9b3b4e5bc4050c787d76c3d0265f0cfc23</citedby><cites>FETCH-LOGICAL-a314t-b2644ea13baabaf698df5847e65aef9b3b4e5bc4050c787d76c3d0265f0cfc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ic101001e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ic101001e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20704361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hinteregger, Ernst</creatorcontrib><creatorcontrib>Pribil, Andreas B</creatorcontrib><creatorcontrib>Hofer, Thomas S</creatorcontrib><creatorcontrib>Randolf, Bernhard R</creatorcontrib><creatorcontrib>Weiss, Alexander K. H</creatorcontrib><creatorcontrib>Rode, Bernd M</creatorcontrib><title>Structure and Dynamics of the Chromate Ion in Aqueous Solution. An ab Initio QMCF-MD Simulation</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>An ab initio quantum-mechanical charge-field molecular-dynamics (QMCF-MD) simulation of the chromate ion in aqueous solution at ambient temperature was performed to study the structure and dynamics of this ion and its hydration shell. In contrast to conventional quantum-mechanical molecular-mechanics molecular-dynamics (QM/MM-MD) simulations, the QMCF-MD approach offers the possibility of investigating composite systems with the accuracy of a QM/MM method but without the time-consuming construction of solute−solvent potential functions. The data of the simulation give a clear picture of the first hydration shell of the chromate anion, which consists of 14 water molecules. The mean distance between the oxygen atoms of the chromate and the hydrogen atoms of water is 1.82 Å. Each chromate oxygen atom is in average coordinated to 2.6 water molecules. The first-shell mean ligand residence time was evalulated as 2.2 ps; the vibrational frequency of the νOH mode was found to be 185 cm−1. Several structural parameters such as the radial distribution functions, angular distribution functions, and coordination number distributions enable a full characterization of the embedding of the chromate ion in the solvent water. The dynamics of the hydration structure are described by mean residence times of the water molecules in the first hydration shell, distance plots, and velocity autocorrelation functions.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQhS0EoqUw8AeQF4QYUs6J4zRjlVKo1AqhdmCzHMdWUyU22MnQf4-rlk7ccnfSp6f3HkL3BMYEYvJSSwIEgKgLNCRpDFFK4OsSDQHCTRjLB-jG-x0A5All12gQQwY0YWSI-Lpzvex6p7AwFZ7tjWhr6bHVuNsqXGydbUWn8MIaXBs8_emV7T1e26bvamvGeGqwKPHC1OHFn6tiHq1meF23fSMOwC260qLx6u60R2gzf90U79Hy421RTJeRSAjtojJmlCpBklKIUmiWTyqdTmimWCqUzsukpCotJYUUZDbJqozJpIKYpRqklnEyQk9H2W9ng0Xf8bb2UjWNMAe_PKM5wCRMIJ-PpHTWe6c0_3Z1K9yeE-CHNvm5zcA-nFT7slXVmfyrLwCPR0BIz3e2dyZk_EfoF4tOepk</recordid><startdate>20100906</startdate><enddate>20100906</enddate><creator>Hinteregger, Ernst</creator><creator>Pribil, Andreas B</creator><creator>Hofer, Thomas S</creator><creator>Randolf, Bernhard R</creator><creator>Weiss, Alexander K. H</creator><creator>Rode, Bernd M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100906</creationdate><title>Structure and Dynamics of the Chromate Ion in Aqueous Solution. An ab Initio QMCF-MD Simulation</title><author>Hinteregger, Ernst ; Pribil, Andreas B ; Hofer, Thomas S ; Randolf, Bernhard R ; Weiss, Alexander K. H ; Rode, Bernd M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-b2644ea13baabaf698df5847e65aef9b3b4e5bc4050c787d76c3d0265f0cfc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinteregger, Ernst</creatorcontrib><creatorcontrib>Pribil, Andreas B</creatorcontrib><creatorcontrib>Hofer, Thomas S</creatorcontrib><creatorcontrib>Randolf, Bernhard R</creatorcontrib><creatorcontrib>Weiss, Alexander K. H</creatorcontrib><creatorcontrib>Rode, Bernd M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinteregger, Ernst</au><au>Pribil, Andreas B</au><au>Hofer, Thomas S</au><au>Randolf, Bernhard R</au><au>Weiss, Alexander K. H</au><au>Rode, Bernd M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Dynamics of the Chromate Ion in Aqueous Solution. An ab Initio QMCF-MD Simulation</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2010-09-06</date><risdate>2010</risdate><volume>49</volume><issue>17</issue><spage>7964</spage><epage>7968</epage><pages>7964-7968</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>An ab initio quantum-mechanical charge-field molecular-dynamics (QMCF-MD) simulation of the chromate ion in aqueous solution at ambient temperature was performed to study the structure and dynamics of this ion and its hydration shell. In contrast to conventional quantum-mechanical molecular-mechanics molecular-dynamics (QM/MM-MD) simulations, the QMCF-MD approach offers the possibility of investigating composite systems with the accuracy of a QM/MM method but without the time-consuming construction of solute−solvent potential functions. The data of the simulation give a clear picture of the first hydration shell of the chromate anion, which consists of 14 water molecules. The mean distance between the oxygen atoms of the chromate and the hydrogen atoms of water is 1.82 Å. Each chromate oxygen atom is in average coordinated to 2.6 water molecules. The first-shell mean ligand residence time was evalulated as 2.2 ps; the vibrational frequency of the νOH mode was found to be 185 cm−1. Several structural parameters such as the radial distribution functions, angular distribution functions, and coordination number distributions enable a full characterization of the embedding of the chromate ion in the solvent water. The dynamics of the hydration structure are described by mean residence times of the water molecules in the first hydration shell, distance plots, and velocity autocorrelation functions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20704361</pmid><doi>10.1021/ic101001e</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2010-09, Vol.49 (17), p.7964-7968
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_749008888
source ACS Publications
title Structure and Dynamics of the Chromate Ion in Aqueous Solution. An ab Initio QMCF-MD Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Dynamics%20of%20the%20Chromate%20Ion%20in%20Aqueous%20Solution.%20An%20ab%20Initio%20QMCF-MD%20Simulation&rft.jtitle=Inorganic%20chemistry&rft.au=Hinteregger,%20Ernst&rft.date=2010-09-06&rft.volume=49&rft.issue=17&rft.spage=7964&rft.epage=7968&rft.pages=7964-7968&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic101001e&rft_dat=%3Cproquest_cross%3E749008888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=749008888&rft_id=info:pmid/20704361&rfr_iscdi=true