Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks

A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40°C and 75% relative humidity. An ensemble artificial neural network (EANN) was used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical sciences 2010-10, Vol.99 (10), p.4201-4214
Hauptverfasser: Takagaki, Keisuke, Arai, Hiroaki, Takayama, Kozo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4214
container_issue 10
container_start_page 4201
container_title Journal of pharmaceutical sciences
container_volume 99
creator Takagaki, Keisuke
Arai, Hiroaki
Takayama, Kozo
description A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40°C and 75% relative humidity. An ensemble artificial neural network (EANN) was used to predict responses to differences in quantities of excipients and physical-chemical properties of active ingredients in tablets. Most classical neural networks involve a tedious trial and error approach, but EANNs automatically determine basal key parameters, which ensure that an optimal structure is rapidly obtained. We compared the predictive abilities of EANNs in which the following kinds of training algorithms were used: linear, radial basis function, general regression (GR), and multilayer perceptron. The GR EANN predicted pharmaceutical responses such as TS and DT most accurately, as evidenced by high correlation coefficients in a leave-some-out cross-validation procedure. When used in conjunction with a tablet database, the GR EANN is capable of identifying acceptable candidate tablet formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:42014214, 2010
doi_str_mv 10.1002/jps.22135
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_748988395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002235491532445X</els_id><sourcerecordid>748988395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4695-2c94cf0050fa8a81f066a3b1dc44816e24f1cb1c5b3f9a274716edc1375ae7523</originalsourceid><addsrcrecordid>eNp9ks9uEzEQxi0EoiVw4AWQLwg4bGt71_vnGNLSFpUSqUEcrVnvbOt2sxtsJ6VPxGsyaZJyAU6jGf--GXm-Yey1FAdSCHV4swgHSslUP2H7UiuR5EIWT9k-vakk1Vm1x16EcCOEyIXWz9meEulamO2zXxOPEN3Q86HlwGdQdxj5EUSoISCfDH0E17v-il_iCj10fGyjWyE_6688Ng77GDj0DZ-uM7vrNLtG5_n0GvwcLC6js6ScUAo2oneBCoF_pAkNJ8FxH3BOg_nYR9c66wi-wKV_CPFu8LfhJXvWQhfw1TaO2LdPx7PJaXL-9eRsMj5PbJZXOlG2ymwrhBYtlFDKVuQ5pLVsbJaVMkeVtdLW0uo6bStQRVZQsbEyLTRgoVU6Yu82fRd--LHEEM3cBYtdBz0Oy2CKrKzKMq00ke__S5IdSpUqI3rEPmxQ64cQPLZm4d0c_L2RwqyNMOSgeXCQ2Dfbtst6js0jubOMgLdbAAJttfXQWxf-cKkqpczWjQ433J3r8P7fE83n6eVudLJRkD_481EB_tbkBW3IfL84MV_kaXlUSW1mxKcbHsmQlUNvgqWDsHQIHm00zeD-8sHfUSTUWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352282488</pqid></control><display><type>article</type><title>Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Takagaki, Keisuke ; Arai, Hiroaki ; Takayama, Kozo</creator><creatorcontrib>Takagaki, Keisuke ; Arai, Hiroaki ; Takayama, Kozo</creatorcontrib><description>A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40°C and 75% relative humidity. An ensemble artificial neural network (EANN) was used to predict responses to differences in quantities of excipients and physical-chemical properties of active ingredients in tablets. Most classical neural networks involve a tedious trial and error approach, but EANNs automatically determine basal key parameters, which ensure that an optimal structure is rapidly obtained. We compared the predictive abilities of EANNs in which the following kinds of training algorithms were used: linear, radial basis function, general regression (GR), and multilayer perceptron. The GR EANN predicted pharmaceutical responses such as TS and DT most accurately, as evidenced by high correlation coefficients in a leave-some-out cross-validation procedure. When used in conjunction with a tablet database, the GR EANN is capable of identifying acceptable candidate tablet formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:42014214, 2010</description><identifier>ISSN: 0022-3549</identifier><identifier>ISSN: 1520-6017</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.22135</identifier><identifier>PMID: 20310024</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>Hoboken: Elsevier Inc</publisher><subject>Biological and medical sciences ; Chemistry, Pharmaceutical ; Databases, Factual ; Excipients ; factorial design ; formulation ; General pharmacology ; Medical sciences ; neural networks ; Neural Networks (Computer) ; nonlinear regression ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; physical characterization ; simulations ; solid dosage form ; stability ; Tablets</subject><ispartof>Journal of pharmaceutical sciences, 2010-10, Vol.99 (10), p.4201-4214</ispartof><rights>2010 Wiley-Liss, Inc.</rights><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4695-2c94cf0050fa8a81f066a3b1dc44816e24f1cb1c5b3f9a274716edc1375ae7523</citedby><cites>FETCH-LOGICAL-c4695-2c94cf0050fa8a81f066a3b1dc44816e24f1cb1c5b3f9a274716edc1375ae7523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.22135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjps.22135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23281145$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20310024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagaki, Keisuke</creatorcontrib><creatorcontrib>Arai, Hiroaki</creatorcontrib><creatorcontrib>Takayama, Kozo</creatorcontrib><title>Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks</title><title>Journal of pharmaceutical sciences</title><addtitle>J. Pharm. Sci</addtitle><description>A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40°C and 75% relative humidity. An ensemble artificial neural network (EANN) was used to predict responses to differences in quantities of excipients and physical-chemical properties of active ingredients in tablets. Most classical neural networks involve a tedious trial and error approach, but EANNs automatically determine basal key parameters, which ensure that an optimal structure is rapidly obtained. We compared the predictive abilities of EANNs in which the following kinds of training algorithms were used: linear, radial basis function, general regression (GR), and multilayer perceptron. The GR EANN predicted pharmaceutical responses such as TS and DT most accurately, as evidenced by high correlation coefficients in a leave-some-out cross-validation procedure. When used in conjunction with a tablet database, the GR EANN is capable of identifying acceptable candidate tablet formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:42014214, 2010</description><subject>Biological and medical sciences</subject><subject>Chemistry, Pharmaceutical</subject><subject>Databases, Factual</subject><subject>Excipients</subject><subject>factorial design</subject><subject>formulation</subject><subject>General pharmacology</subject><subject>Medical sciences</subject><subject>neural networks</subject><subject>Neural Networks (Computer)</subject><subject>nonlinear regression</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>physical characterization</subject><subject>simulations</subject><subject>solid dosage form</subject><subject>stability</subject><subject>Tablets</subject><issn>0022-3549</issn><issn>1520-6017</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks9uEzEQxi0EoiVw4AWQLwg4bGt71_vnGNLSFpUSqUEcrVnvbOt2sxtsJ6VPxGsyaZJyAU6jGf--GXm-Yey1FAdSCHV4swgHSslUP2H7UiuR5EIWT9k-vakk1Vm1x16EcCOEyIXWz9meEulamO2zXxOPEN3Q86HlwGdQdxj5EUSoISCfDH0E17v-il_iCj10fGyjWyE_6688Ng77GDj0DZ-uM7vrNLtG5_n0GvwcLC6js6ScUAo2oneBCoF_pAkNJ8FxH3BOg_nYR9c66wi-wKV_CPFu8LfhJXvWQhfw1TaO2LdPx7PJaXL-9eRsMj5PbJZXOlG2ymwrhBYtlFDKVuQ5pLVsbJaVMkeVtdLW0uo6bStQRVZQsbEyLTRgoVU6Yu82fRd--LHEEM3cBYtdBz0Oy2CKrKzKMq00ke__S5IdSpUqI3rEPmxQ64cQPLZm4d0c_L2RwqyNMOSgeXCQ2Dfbtst6js0jubOMgLdbAAJttfXQWxf-cKkqpczWjQ433J3r8P7fE83n6eVudLJRkD_481EB_tbkBW3IfL84MV_kaXlUSW1mxKcbHsmQlUNvgqWDsHQIHm00zeD-8sHfUSTUWg</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Takagaki, Keisuke</creator><creator>Arai, Hiroaki</creator><creator>Takayama, Kozo</creator><general>Elsevier Inc</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Pharmaceutical Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201010</creationdate><title>Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks</title><author>Takagaki, Keisuke ; Arai, Hiroaki ; Takayama, Kozo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4695-2c94cf0050fa8a81f066a3b1dc44816e24f1cb1c5b3f9a274716edc1375ae7523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Chemistry, Pharmaceutical</topic><topic>Databases, Factual</topic><topic>Excipients</topic><topic>factorial design</topic><topic>formulation</topic><topic>General pharmacology</topic><topic>Medical sciences</topic><topic>neural networks</topic><topic>Neural Networks (Computer)</topic><topic>nonlinear regression</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>physical characterization</topic><topic>simulations</topic><topic>solid dosage form</topic><topic>stability</topic><topic>Tablets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagaki, Keisuke</creatorcontrib><creatorcontrib>Arai, Hiroaki</creatorcontrib><creatorcontrib>Takayama, Kozo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagaki, Keisuke</au><au>Arai, Hiroaki</au><au>Takayama, Kozo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J. Pharm. Sci</addtitle><date>2010-10</date><risdate>2010</risdate><volume>99</volume><issue>10</issue><spage>4201</spage><epage>4214</epage><pages>4201-4214</pages><issn>0022-3549</issn><issn>1520-6017</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40°C and 75% relative humidity. An ensemble artificial neural network (EANN) was used to predict responses to differences in quantities of excipients and physical-chemical properties of active ingredients in tablets. Most classical neural networks involve a tedious trial and error approach, but EANNs automatically determine basal key parameters, which ensure that an optimal structure is rapidly obtained. We compared the predictive abilities of EANNs in which the following kinds of training algorithms were used: linear, radial basis function, general regression (GR), and multilayer perceptron. The GR EANN predicted pharmaceutical responses such as TS and DT most accurately, as evidenced by high correlation coefficients in a leave-some-out cross-validation procedure. When used in conjunction with a tablet database, the GR EANN is capable of identifying acceptable candidate tablet formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:42014214, 2010</abstract><cop>Hoboken</cop><pub>Elsevier Inc</pub><pmid>20310024</pmid><doi>10.1002/jps.22135</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3549
ispartof Journal of pharmaceutical sciences, 2010-10, Vol.99 (10), p.4201-4214
issn 0022-3549
1520-6017
1520-6017
language eng
recordid cdi_proquest_miscellaneous_748988395
source MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection
subjects Biological and medical sciences
Chemistry, Pharmaceutical
Databases, Factual
Excipients
factorial design
formulation
General pharmacology
Medical sciences
neural networks
Neural Networks (Computer)
nonlinear regression
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
physical characterization
simulations
solid dosage form
stability
Tablets
title Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creation%20of%20a%20Tablet%20Database%20Containing%20Several%20Active%20Ingredients%20and%20Prediction%20of%20Their%20Pharmaceutical%20Characteristics%20Based%20on%20Ensemble%20Artificial%20Neural%20Networks&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Takagaki,%20Keisuke&rft.date=2010-10&rft.volume=99&rft.issue=10&rft.spage=4201&rft.epage=4214&rft.pages=4201-4214&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.22135&rft_dat=%3Cproquest_cross%3E748988395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1352282488&rft_id=info:pmid/20310024&rft_els_id=S002235491532445X&rfr_iscdi=true