Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks
A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40°C and 75% relative humidity. An ensemble artificial neural network (EANN) was used...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical sciences 2010-10, Vol.99 (10), p.4201-4214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4214 |
---|---|
container_issue | 10 |
container_start_page | 4201 |
container_title | Journal of pharmaceutical sciences |
container_volume | 99 |
creator | Takagaki, Keisuke Arai, Hiroaki Takayama, Kozo |
description | A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40°C and 75% relative humidity. An ensemble artificial neural network (EANN) was used to predict responses to differences in quantities of excipients and physical-chemical properties of active ingredients in tablets. Most classical neural networks involve a tedious trial and error approach, but EANNs automatically determine basal key parameters, which ensure that an optimal structure is rapidly obtained. We compared the predictive abilities of EANNs in which the following kinds of training algorithms were used: linear, radial basis function, general regression (GR), and multilayer perceptron. The GR EANN predicted pharmaceutical responses such as TS and DT most accurately, as evidenced by high correlation coefficients in a leave-some-out cross-validation procedure. When used in conjunction with a tablet database, the GR EANN is capable of identifying acceptable candidate tablet formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:42014214, 2010 |
doi_str_mv | 10.1002/jps.22135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_748988395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002235491532445X</els_id><sourcerecordid>748988395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4695-2c94cf0050fa8a81f066a3b1dc44816e24f1cb1c5b3f9a274716edc1375ae7523</originalsourceid><addsrcrecordid>eNp9ks9uEzEQxi0EoiVw4AWQLwg4bGt71_vnGNLSFpUSqUEcrVnvbOt2sxtsJ6VPxGsyaZJyAU6jGf--GXm-Yey1FAdSCHV4swgHSslUP2H7UiuR5EIWT9k-vakk1Vm1x16EcCOEyIXWz9meEulamO2zXxOPEN3Q86HlwGdQdxj5EUSoISCfDH0E17v-il_iCj10fGyjWyE_6688Ng77GDj0DZ-uM7vrNLtG5_n0GvwcLC6js6ScUAo2oneBCoF_pAkNJ8FxH3BOg_nYR9c66wi-wKV_CPFu8LfhJXvWQhfw1TaO2LdPx7PJaXL-9eRsMj5PbJZXOlG2ymwrhBYtlFDKVuQ5pLVsbJaVMkeVtdLW0uo6bStQRVZQsbEyLTRgoVU6Yu82fRd--LHEEM3cBYtdBz0Oy2CKrKzKMq00ke__S5IdSpUqI3rEPmxQ64cQPLZm4d0c_L2RwqyNMOSgeXCQ2Dfbtst6js0jubOMgLdbAAJttfXQWxf-cKkqpczWjQ433J3r8P7fE83n6eVudLJRkD_481EB_tbkBW3IfL84MV_kaXlUSW1mxKcbHsmQlUNvgqWDsHQIHm00zeD-8sHfUSTUWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352282488</pqid></control><display><type>article</type><title>Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Takagaki, Keisuke ; Arai, Hiroaki ; Takayama, Kozo</creator><creatorcontrib>Takagaki, Keisuke ; Arai, Hiroaki ; Takayama, Kozo</creatorcontrib><description>A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40°C and 75% relative humidity. An ensemble artificial neural network (EANN) was used to predict responses to differences in quantities of excipients and physical-chemical properties of active ingredients in tablets. Most classical neural networks involve a tedious trial and error approach, but EANNs automatically determine basal key parameters, which ensure that an optimal structure is rapidly obtained. We compared the predictive abilities of EANNs in which the following kinds of training algorithms were used: linear, radial basis function, general regression (GR), and multilayer perceptron. The GR EANN predicted pharmaceutical responses such as TS and DT most accurately, as evidenced by high correlation coefficients in a leave-some-out cross-validation procedure. When used in conjunction with a tablet database, the GR EANN is capable of identifying acceptable candidate tablet formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:42014214, 2010</description><identifier>ISSN: 0022-3549</identifier><identifier>ISSN: 1520-6017</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.22135</identifier><identifier>PMID: 20310024</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>Hoboken: Elsevier Inc</publisher><subject>Biological and medical sciences ; Chemistry, Pharmaceutical ; Databases, Factual ; Excipients ; factorial design ; formulation ; General pharmacology ; Medical sciences ; neural networks ; Neural Networks (Computer) ; nonlinear regression ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; physical characterization ; simulations ; solid dosage form ; stability ; Tablets</subject><ispartof>Journal of pharmaceutical sciences, 2010-10, Vol.99 (10), p.4201-4214</ispartof><rights>2010 Wiley-Liss, Inc.</rights><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4695-2c94cf0050fa8a81f066a3b1dc44816e24f1cb1c5b3f9a274716edc1375ae7523</citedby><cites>FETCH-LOGICAL-c4695-2c94cf0050fa8a81f066a3b1dc44816e24f1cb1c5b3f9a274716edc1375ae7523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.22135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjps.22135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23281145$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20310024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takagaki, Keisuke</creatorcontrib><creatorcontrib>Arai, Hiroaki</creatorcontrib><creatorcontrib>Takayama, Kozo</creatorcontrib><title>Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks</title><title>Journal of pharmaceutical sciences</title><addtitle>J. Pharm. Sci</addtitle><description>A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40°C and 75% relative humidity. An ensemble artificial neural network (EANN) was used to predict responses to differences in quantities of excipients and physical-chemical properties of active ingredients in tablets. Most classical neural networks involve a tedious trial and error approach, but EANNs automatically determine basal key parameters, which ensure that an optimal structure is rapidly obtained. We compared the predictive abilities of EANNs in which the following kinds of training algorithms were used: linear, radial basis function, general regression (GR), and multilayer perceptron. The GR EANN predicted pharmaceutical responses such as TS and DT most accurately, as evidenced by high correlation coefficients in a leave-some-out cross-validation procedure. When used in conjunction with a tablet database, the GR EANN is capable of identifying acceptable candidate tablet formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:42014214, 2010</description><subject>Biological and medical sciences</subject><subject>Chemistry, Pharmaceutical</subject><subject>Databases, Factual</subject><subject>Excipients</subject><subject>factorial design</subject><subject>formulation</subject><subject>General pharmacology</subject><subject>Medical sciences</subject><subject>neural networks</subject><subject>Neural Networks (Computer)</subject><subject>nonlinear regression</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>physical characterization</subject><subject>simulations</subject><subject>solid dosage form</subject><subject>stability</subject><subject>Tablets</subject><issn>0022-3549</issn><issn>1520-6017</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks9uEzEQxi0EoiVw4AWQLwg4bGt71_vnGNLSFpUSqUEcrVnvbOt2sxtsJ6VPxGsyaZJyAU6jGf--GXm-Yey1FAdSCHV4swgHSslUP2H7UiuR5EIWT9k-vakk1Vm1x16EcCOEyIXWz9meEulamO2zXxOPEN3Q86HlwGdQdxj5EUSoISCfDH0E17v-il_iCj10fGyjWyE_6688Ng77GDj0DZ-uM7vrNLtG5_n0GvwcLC6js6ScUAo2oneBCoF_pAkNJ8FxH3BOg_nYR9c66wi-wKV_CPFu8LfhJXvWQhfw1TaO2LdPx7PJaXL-9eRsMj5PbJZXOlG2ymwrhBYtlFDKVuQ5pLVsbJaVMkeVtdLW0uo6bStQRVZQsbEyLTRgoVU6Yu82fRd--LHEEM3cBYtdBz0Oy2CKrKzKMq00ke__S5IdSpUqI3rEPmxQ64cQPLZm4d0c_L2RwqyNMOSgeXCQ2Dfbtst6js0jubOMgLdbAAJttfXQWxf-cKkqpczWjQ433J3r8P7fE83n6eVudLJRkD_481EB_tbkBW3IfL84MV_kaXlUSW1mxKcbHsmQlUNvgqWDsHQIHm00zeD-8sHfUSTUWg</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Takagaki, Keisuke</creator><creator>Arai, Hiroaki</creator><creator>Takayama, Kozo</creator><general>Elsevier Inc</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Pharmaceutical Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201010</creationdate><title>Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks</title><author>Takagaki, Keisuke ; Arai, Hiroaki ; Takayama, Kozo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4695-2c94cf0050fa8a81f066a3b1dc44816e24f1cb1c5b3f9a274716edc1375ae7523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Chemistry, Pharmaceutical</topic><topic>Databases, Factual</topic><topic>Excipients</topic><topic>factorial design</topic><topic>formulation</topic><topic>General pharmacology</topic><topic>Medical sciences</topic><topic>neural networks</topic><topic>Neural Networks (Computer)</topic><topic>nonlinear regression</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>physical characterization</topic><topic>simulations</topic><topic>solid dosage form</topic><topic>stability</topic><topic>Tablets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takagaki, Keisuke</creatorcontrib><creatorcontrib>Arai, Hiroaki</creatorcontrib><creatorcontrib>Takayama, Kozo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takagaki, Keisuke</au><au>Arai, Hiroaki</au><au>Takayama, Kozo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J. Pharm. Sci</addtitle><date>2010-10</date><risdate>2010</risdate><volume>99</volume><issue>10</issue><spage>4201</spage><epage>4214</epage><pages>4201-4214</pages><issn>0022-3549</issn><issn>1520-6017</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>A tablet database containing several active ingredients for a standard tablet formulation was created. Tablet tensile strength (TS) and disintegration time (DT) were measured before and after storage for 30 days at 40°C and 75% relative humidity. An ensemble artificial neural network (EANN) was used to predict responses to differences in quantities of excipients and physical-chemical properties of active ingredients in tablets. Most classical neural networks involve a tedious trial and error approach, but EANNs automatically determine basal key parameters, which ensure that an optimal structure is rapidly obtained. We compared the predictive abilities of EANNs in which the following kinds of training algorithms were used: linear, radial basis function, general regression (GR), and multilayer perceptron. The GR EANN predicted pharmaceutical responses such as TS and DT most accurately, as evidenced by high correlation coefficients in a leave-some-out cross-validation procedure. When used in conjunction with a tablet database, the GR EANN is capable of identifying acceptable candidate tablet formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:42014214, 2010</abstract><cop>Hoboken</cop><pub>Elsevier Inc</pub><pmid>20310024</pmid><doi>10.1002/jps.22135</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3549 |
ispartof | Journal of pharmaceutical sciences, 2010-10, Vol.99 (10), p.4201-4214 |
issn | 0022-3549 1520-6017 1520-6017 |
language | eng |
recordid | cdi_proquest_miscellaneous_748988395 |
source | MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Biological and medical sciences Chemistry, Pharmaceutical Databases, Factual Excipients factorial design formulation General pharmacology Medical sciences neural networks Neural Networks (Computer) nonlinear regression Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments physical characterization simulations solid dosage form stability Tablets |
title | Creation of a Tablet Database Containing Several Active Ingredients and Prediction of Their Pharmaceutical Characteristics Based on Ensemble Artificial Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creation%20of%20a%20Tablet%20Database%20Containing%20Several%20Active%20Ingredients%20and%20Prediction%20of%20Their%20Pharmaceutical%20Characteristics%20Based%20on%20Ensemble%20Artificial%20Neural%20Networks&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Takagaki,%20Keisuke&rft.date=2010-10&rft.volume=99&rft.issue=10&rft.spage=4201&rft.epage=4214&rft.pages=4201-4214&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.22135&rft_dat=%3Cproquest_cross%3E748988395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1352282488&rft_id=info:pmid/20310024&rft_els_id=S002235491532445X&rfr_iscdi=true |