Photon-enhanced thermionic emission for solar concentrator systems

Solar-energy conversion usually takes one of two forms: the ‘quantum’ approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the ‘thermal’ approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2010-09, Vol.9 (9), p.762-767
Hauptverfasser: Schwede, Jared W., Bargatin, Igor, Riley, Daniel C., Hardin, Brian E., Rosenthal, Samuel J., Sun, Yun, Schmitt, Felix, Pianetta, Piero, Howe, Roger T., Shen, Zhi-Xun, Melosh, Nicholas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 767
container_issue 9
container_start_page 762
container_title Nature materials
container_volume 9
creator Schwede, Jared W.
Bargatin, Igor
Riley, Daniel C.
Hardin, Brian E.
Rosenthal, Samuel J.
Sun, Yun
Schmitt, Felix
Pianetta, Piero
Howe, Roger T.
Shen, Zhi-Xun
Melosh, Nicholas A.
description Solar-energy conversion usually takes one of two forms: the ‘quantum’ approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the ‘thermal’ approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 °C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%. The conversion of solar energy into electricity usually occurs either electrically or through thermal conversion. A new mechanism, photon-enhanced thermionic emission, which combines electric as well as thermal conversion mechanisms, is now shown to lead to enhanced conversion efficiencies that potentially could even exceed the theoretical limits of conventional photovoltaic cells.
doi_str_mv 10.1038/nmat2814
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_748976968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117953961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-2dbb2b2031a345993bca751a6a4312c734cfc805f027143f528316bfeda8bda93</originalsourceid><addsrcrecordid>eNpl0E1LwzAYB_AgiptT8BNI8aIeqnlvepzDNxjoQc8lSVPX0SYzSQ_79mZsU9BTHpIf_zz8AThH8BZBIu5sLyMWiB6AMaIFzynn8HA3I4TxCJyEsIQQI8b4MRhhyAsOBR-D-7eFi87mxi6k1abO4sL4vnW21Znp2xDSmDXOZ8F10mfaJWSjl3FztQ7R9OEUHDWyC-Zsd07Ax-PD--w5n78-vcym81wTSmKOa6WwwpAgSSgrS6K0LBiSXFKCsC4I1Y0WkDUQF4iShmFBEFeNqaVQtSzJBFxtc1fefQ0mxCrtp03XSWvcEKqCirLgJRdJXv6RSzd4m5ZLiDNMIWMJXW-R9i4Eb5pq5dte-nWFYLVptdq3mujFLm9Qval_4L7GBG62IKQn-2n874f_wr4BJjaAXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746524055</pqid></control><display><type>article</type><title>Photon-enhanced thermionic emission for solar concentrator systems</title><source>SpringerLink Journals (MCLS)</source><source>Nature</source><creator>Schwede, Jared W. ; Bargatin, Igor ; Riley, Daniel C. ; Hardin, Brian E. ; Rosenthal, Samuel J. ; Sun, Yun ; Schmitt, Felix ; Pianetta, Piero ; Howe, Roger T. ; Shen, Zhi-Xun ; Melosh, Nicholas A.</creator><creatorcontrib>Schwede, Jared W. ; Bargatin, Igor ; Riley, Daniel C. ; Hardin, Brian E. ; Rosenthal, Samuel J. ; Sun, Yun ; Schmitt, Felix ; Pianetta, Piero ; Howe, Roger T. ; Shen, Zhi-Xun ; Melosh, Nicholas A.</creatorcontrib><description>Solar-energy conversion usually takes one of two forms: the ‘quantum’ approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the ‘thermal’ approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 °C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%. The conversion of solar energy into electricity usually occurs either electrically or through thermal conversion. A new mechanism, photon-enhanced thermionic emission, which combines electric as well as thermal conversion mechanisms, is now shown to lead to enhanced conversion efficiencies that potentially could even exceed the theoretical limits of conventional photovoltaic cells.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2814</identifier><identifier>PMID: 20676086</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019 ; 639/301/119/1000 ; 639/301/299/946 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electricity ; Electrons ; Emissions ; Energy conversion ; Energy sources ; High temperature ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Photovoltaics ; Semiconductors ; Solar energy ; Solar radiation ; Sunlight ; Temperature ; Thermal energy ; Waste heat</subject><ispartof>Nature materials, 2010-09, Vol.9 (9), p.762-767</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-2dbb2b2031a345993bca751a6a4312c734cfc805f027143f528316bfeda8bda93</citedby><cites>FETCH-LOGICAL-c343t-2dbb2b2031a345993bca751a6a4312c734cfc805f027143f528316bfeda8bda93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat2814$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat2814$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20676086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwede, Jared W.</creatorcontrib><creatorcontrib>Bargatin, Igor</creatorcontrib><creatorcontrib>Riley, Daniel C.</creatorcontrib><creatorcontrib>Hardin, Brian E.</creatorcontrib><creatorcontrib>Rosenthal, Samuel J.</creatorcontrib><creatorcontrib>Sun, Yun</creatorcontrib><creatorcontrib>Schmitt, Felix</creatorcontrib><creatorcontrib>Pianetta, Piero</creatorcontrib><creatorcontrib>Howe, Roger T.</creatorcontrib><creatorcontrib>Shen, Zhi-Xun</creatorcontrib><creatorcontrib>Melosh, Nicholas A.</creatorcontrib><title>Photon-enhanced thermionic emission for solar concentrator systems</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Solar-energy conversion usually takes one of two forms: the ‘quantum’ approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the ‘thermal’ approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 °C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%. The conversion of solar energy into electricity usually occurs either electrically or through thermal conversion. A new mechanism, photon-enhanced thermionic emission, which combines electric as well as thermal conversion mechanisms, is now shown to lead to enhanced conversion efficiencies that potentially could even exceed the theoretical limits of conventional photovoltaic cells.</description><subject>639/301/1019</subject><subject>639/301/119/1000</subject><subject>639/301/299/946</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electricity</subject><subject>Electrons</subject><subject>Emissions</subject><subject>Energy conversion</subject><subject>Energy sources</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photovoltaics</subject><subject>Semiconductors</subject><subject>Solar energy</subject><subject>Solar radiation</subject><subject>Sunlight</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>Waste heat</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E1LwzAYB_AgiptT8BNI8aIeqnlvepzDNxjoQc8lSVPX0SYzSQ_79mZsU9BTHpIf_zz8AThH8BZBIu5sLyMWiB6AMaIFzynn8HA3I4TxCJyEsIQQI8b4MRhhyAsOBR-D-7eFi87mxi6k1abO4sL4vnW21Znp2xDSmDXOZ8F10mfaJWSjl3FztQ7R9OEUHDWyC-Zsd07Ax-PD--w5n78-vcym81wTSmKOa6WwwpAgSSgrS6K0LBiSXFKCsC4I1Y0WkDUQF4iShmFBEFeNqaVQtSzJBFxtc1fefQ0mxCrtp03XSWvcEKqCirLgJRdJXv6RSzd4m5ZLiDNMIWMJXW-R9i4Eb5pq5dte-nWFYLVptdq3mujFLm9Qval_4L7GBG62IKQn-2n874f_wr4BJjaAXA</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Schwede, Jared W.</creator><creator>Bargatin, Igor</creator><creator>Riley, Daniel C.</creator><creator>Hardin, Brian E.</creator><creator>Rosenthal, Samuel J.</creator><creator>Sun, Yun</creator><creator>Schmitt, Felix</creator><creator>Pianetta, Piero</creator><creator>Howe, Roger T.</creator><creator>Shen, Zhi-Xun</creator><creator>Melosh, Nicholas A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20100901</creationdate><title>Photon-enhanced thermionic emission for solar concentrator systems</title><author>Schwede, Jared W. ; Bargatin, Igor ; Riley, Daniel C. ; Hardin, Brian E. ; Rosenthal, Samuel J. ; Sun, Yun ; Schmitt, Felix ; Pianetta, Piero ; Howe, Roger T. ; Shen, Zhi-Xun ; Melosh, Nicholas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-2dbb2b2031a345993bca751a6a4312c734cfc805f027143f528316bfeda8bda93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/301/1019</topic><topic>639/301/119/1000</topic><topic>639/301/299/946</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electricity</topic><topic>Electrons</topic><topic>Emissions</topic><topic>Energy conversion</topic><topic>Energy sources</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photovoltaics</topic><topic>Semiconductors</topic><topic>Solar energy</topic><topic>Solar radiation</topic><topic>Sunlight</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>Waste heat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwede, Jared W.</creatorcontrib><creatorcontrib>Bargatin, Igor</creatorcontrib><creatorcontrib>Riley, Daniel C.</creatorcontrib><creatorcontrib>Hardin, Brian E.</creatorcontrib><creatorcontrib>Rosenthal, Samuel J.</creatorcontrib><creatorcontrib>Sun, Yun</creatorcontrib><creatorcontrib>Schmitt, Felix</creatorcontrib><creatorcontrib>Pianetta, Piero</creatorcontrib><creatorcontrib>Howe, Roger T.</creatorcontrib><creatorcontrib>Shen, Zhi-Xun</creatorcontrib><creatorcontrib>Melosh, Nicholas A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwede, Jared W.</au><au>Bargatin, Igor</au><au>Riley, Daniel C.</au><au>Hardin, Brian E.</au><au>Rosenthal, Samuel J.</au><au>Sun, Yun</au><au>Schmitt, Felix</au><au>Pianetta, Piero</au><au>Howe, Roger T.</au><au>Shen, Zhi-Xun</au><au>Melosh, Nicholas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photon-enhanced thermionic emission for solar concentrator systems</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>9</volume><issue>9</issue><spage>762</spage><epage>767</epage><pages>762-767</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Solar-energy conversion usually takes one of two forms: the ‘quantum’ approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the ‘thermal’ approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 °C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%. The conversion of solar energy into electricity usually occurs either electrically or through thermal conversion. A new mechanism, photon-enhanced thermionic emission, which combines electric as well as thermal conversion mechanisms, is now shown to lead to enhanced conversion efficiencies that potentially could even exceed the theoretical limits of conventional photovoltaic cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20676086</pmid><doi>10.1038/nmat2814</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2010-09, Vol.9 (9), p.762-767
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_748976968
source SpringerLink Journals (MCLS); Nature
subjects 639/301/1019
639/301/119/1000
639/301/299/946
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Electricity
Electrons
Emissions
Energy conversion
Energy sources
High temperature
Materials Science
Nanotechnology
Optical and Electronic Materials
Photovoltaics
Semiconductors
Solar energy
Solar radiation
Sunlight
Temperature
Thermal energy
Waste heat
title Photon-enhanced thermionic emission for solar concentrator systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photon-enhanced%20thermionic%20emission%20for%20solar%20concentrator%20systems&rft.jtitle=Nature%20materials&rft.au=Schwede,%20Jared%20W.&rft.date=2010-09-01&rft.volume=9&rft.issue=9&rft.spage=762&rft.epage=767&rft.pages=762-767&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2814&rft_dat=%3Cproquest_cross%3E2117953961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746524055&rft_id=info:pmid/20676086&rfr_iscdi=true