Prediction by multiple regression how many variables to enter?

Multiple regression techniques have been used in a number of outcome prediction problems in psychiatric research with results that are encouraging, but far from satisfactory in terms of cross-validation. The authors draw attention to the increased risk of Type 1 error that accompanies entry of a lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of psychiatric research 1971-06, Vol.8 (2), p.119-126
Hauptverfasser: Forsythe, Alan B., May, Philip R.A., Engelman, Laszlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue 2
container_start_page 119
container_title Journal of psychiatric research
container_volume 8
creator Forsythe, Alan B.
May, Philip R.A.
Engelman, Laszlo
description Multiple regression techniques have been used in a number of outcome prediction problems in psychiatric research with results that are encouraging, but far from satisfactory in terms of cross-validation. The authors draw attention to the increased risk of Type 1 error that accompanies entry of a large number of variables into a multiple regression equation. An approach is proposed that consists of a step-wise sliding scale of F-values to enter variables into the equation according to the assumed number of predictor dimensions, the number of variables that have already been entered and the degree of risk that the experimenter is willing to assume that a variable being entered is not a true predictor.
doi_str_mv 10.1016/0022-3956(71)90013-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_74896934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022395671900136</els_id><sourcerecordid>74896934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-524fa8b60d79b68fd9eb17896780c762dd65a22d3c088b718e461d2e6ef1652c3</originalsourceid><addsrcrecordid>eNp9kElLw0AUxwdRaq1-A4WcRA_RWZJZLooUNyjoQc_DZOZFR7LUmaTSb29iS4-eHrz_8ng_hE4JviKY8GuMKU2ZyvmFIJcKY8JSvoemRAqVEibUPpruLIfoKMYvjLGgJJugSaYYVVJN0c1rAOdt59smKdZJ3VedX1aQBPgIEOO4_mx_kto062RlgjdFBTHp2gSaDsLtMTooTRXhZDtn6P3h_m3-lC5eHp_nd4vUslx0aU6z0siCYydUwWXpFBRESMWFxFZw6hzPDaWOWSxlIYiEjBNHgUNJeE4tm6HzTe8ytN89xE7XPlqoKtNA20ctsqFMsWwwZhujDW2MAUq9DL42Ya0J1iM2PTLRIxMtiP7DpvkQO9v290UNbhfachr0m40Ow5MrD0FH66GxA7sAttOu9f8f-AWySntm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>74896934</pqid></control><display><type>article</type><title>Prediction by multiple regression how many variables to enter?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Forsythe, Alan B. ; May, Philip R.A. ; Engelman, Laszlo</creator><creatorcontrib>Forsythe, Alan B. ; May, Philip R.A. ; Engelman, Laszlo</creatorcontrib><description>Multiple regression techniques have been used in a number of outcome prediction problems in psychiatric research with results that are encouraging, but far from satisfactory in terms of cross-validation. The authors draw attention to the increased risk of Type 1 error that accompanies entry of a large number of variables into a multiple regression equation. An approach is proposed that consists of a step-wise sliding scale of F-values to enter variables into the equation according to the assumed number of predictor dimensions, the number of variables that have already been entered and the degree of risk that the experimenter is willing to assume that a variable being entered is not a true predictor.</description><identifier>ISSN: 0022-3956</identifier><identifier>EISSN: 1879-1379</identifier><identifier>DOI: 10.1016/0022-3956(71)90013-6</identifier><identifier>PMID: 4932989</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Clinical Trials as Topic ; Factor Analysis, Statistical ; Humans ; Milieu Therapy ; Probability ; Prognosis ; Psychiatric Status Rating Scales ; Schizophrenia - diagnosis ; Schizophrenia - therapy</subject><ispartof>Journal of psychiatric research, 1971-06, Vol.8 (2), p.119-126</ispartof><rights>1971</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-524fa8b60d79b68fd9eb17896780c762dd65a22d3c088b718e461d2e6ef1652c3</citedby><cites>FETCH-LOGICAL-c357t-524fa8b60d79b68fd9eb17896780c762dd65a22d3c088b718e461d2e6ef1652c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0022-3956(71)90013-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/4932989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Forsythe, Alan B.</creatorcontrib><creatorcontrib>May, Philip R.A.</creatorcontrib><creatorcontrib>Engelman, Laszlo</creatorcontrib><title>Prediction by multiple regression how many variables to enter?</title><title>Journal of psychiatric research</title><addtitle>J Psychiatr Res</addtitle><description>Multiple regression techniques have been used in a number of outcome prediction problems in psychiatric research with results that are encouraging, but far from satisfactory in terms of cross-validation. The authors draw attention to the increased risk of Type 1 error that accompanies entry of a large number of variables into a multiple regression equation. An approach is proposed that consists of a step-wise sliding scale of F-values to enter variables into the equation according to the assumed number of predictor dimensions, the number of variables that have already been entered and the degree of risk that the experimenter is willing to assume that a variable being entered is not a true predictor.</description><subject>Clinical Trials as Topic</subject><subject>Factor Analysis, Statistical</subject><subject>Humans</subject><subject>Milieu Therapy</subject><subject>Probability</subject><subject>Prognosis</subject><subject>Psychiatric Status Rating Scales</subject><subject>Schizophrenia - diagnosis</subject><subject>Schizophrenia - therapy</subject><issn>0022-3956</issn><issn>1879-1379</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1971</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kElLw0AUxwdRaq1-A4WcRA_RWZJZLooUNyjoQc_DZOZFR7LUmaTSb29iS4-eHrz_8ng_hE4JviKY8GuMKU2ZyvmFIJcKY8JSvoemRAqVEibUPpruLIfoKMYvjLGgJJugSaYYVVJN0c1rAOdt59smKdZJ3VedX1aQBPgIEOO4_mx_kto062RlgjdFBTHp2gSaDsLtMTooTRXhZDtn6P3h_m3-lC5eHp_nd4vUslx0aU6z0siCYydUwWXpFBRESMWFxFZw6hzPDaWOWSxlIYiEjBNHgUNJeE4tm6HzTe8ytN89xE7XPlqoKtNA20ctsqFMsWwwZhujDW2MAUq9DL42Ya0J1iM2PTLRIxMtiP7DpvkQO9v290UNbhfachr0m40Ow5MrD0FH66GxA7sAttOu9f8f-AWySntm</recordid><startdate>197106</startdate><enddate>197106</enddate><creator>Forsythe, Alan B.</creator><creator>May, Philip R.A.</creator><creator>Engelman, Laszlo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>197106</creationdate><title>Prediction by multiple regression how many variables to enter?</title><author>Forsythe, Alan B. ; May, Philip R.A. ; Engelman, Laszlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-524fa8b60d79b68fd9eb17896780c762dd65a22d3c088b718e461d2e6ef1652c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1971</creationdate><topic>Clinical Trials as Topic</topic><topic>Factor Analysis, Statistical</topic><topic>Humans</topic><topic>Milieu Therapy</topic><topic>Probability</topic><topic>Prognosis</topic><topic>Psychiatric Status Rating Scales</topic><topic>Schizophrenia - diagnosis</topic><topic>Schizophrenia - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forsythe, Alan B.</creatorcontrib><creatorcontrib>May, Philip R.A.</creatorcontrib><creatorcontrib>Engelman, Laszlo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of psychiatric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forsythe, Alan B.</au><au>May, Philip R.A.</au><au>Engelman, Laszlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction by multiple regression how many variables to enter?</atitle><jtitle>Journal of psychiatric research</jtitle><addtitle>J Psychiatr Res</addtitle><date>1971-06</date><risdate>1971</risdate><volume>8</volume><issue>2</issue><spage>119</spage><epage>126</epage><pages>119-126</pages><issn>0022-3956</issn><eissn>1879-1379</eissn><abstract>Multiple regression techniques have been used in a number of outcome prediction problems in psychiatric research with results that are encouraging, but far from satisfactory in terms of cross-validation. The authors draw attention to the increased risk of Type 1 error that accompanies entry of a large number of variables into a multiple regression equation. An approach is proposed that consists of a step-wise sliding scale of F-values to enter variables into the equation according to the assumed number of predictor dimensions, the number of variables that have already been entered and the degree of risk that the experimenter is willing to assume that a variable being entered is not a true predictor.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>4932989</pmid><doi>10.1016/0022-3956(71)90013-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3956
ispartof Journal of psychiatric research, 1971-06, Vol.8 (2), p.119-126
issn 0022-3956
1879-1379
language eng
recordid cdi_proquest_miscellaneous_74896934
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Clinical Trials as Topic
Factor Analysis, Statistical
Humans
Milieu Therapy
Probability
Prognosis
Psychiatric Status Rating Scales
Schizophrenia - diagnosis
Schizophrenia - therapy
title Prediction by multiple regression how many variables to enter?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20by%20multiple%20regression%20how%20many%20variables%20to%20enter?&rft.jtitle=Journal%20of%20psychiatric%20research&rft.au=Forsythe,%20Alan%20B.&rft.date=1971-06&rft.volume=8&rft.issue=2&rft.spage=119&rft.epage=126&rft.pages=119-126&rft.issn=0022-3956&rft.eissn=1879-1379&rft_id=info:doi/10.1016/0022-3956(71)90013-6&rft_dat=%3Cproquest_cross%3E74896934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=74896934&rft_id=info:pmid/4932989&rft_els_id=0022395671900136&rfr_iscdi=true