Fluorescence lidar detection with shot noise and sky radiance
Rank annihilation-factor analysis is potentially the best method of analyzing fluorescence lidar returns because of the following capability. Rank annihilation can recognize a fluorescence signal of a component that is hidden by a large fluorescence background without a spectrum of that background....
Gespeichert in:
Veröffentlicht in: | Applied Optics 1992-07, Vol.31 (21), p.4214-4223 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4223 |
---|---|
container_issue | 21 |
container_start_page | 4214 |
container_title | Applied Optics |
container_volume | 31 |
creator | ROSEN, D. L GILLESPIE, J. B |
description | Rank annihilation-factor analysis is potentially the best method of analyzing fluorescence lidar returns because of the following capability. Rank annihilation can recognize a fluorescence signal of a component that is hidden by a large fluorescence background without a spectrum of that background. Theoretical models were developed to analyze the effectiveness of rank annihilation-factor analysis in the interpretation of lidar returns. Interferents such as background fluorescence, photon-counting noise, sky radiance, and atmospheric extinction degraded the lidar-return spectra in numerical simulations. The rank annihilation-factor analysis detection algorithm was most severely biased by the combination of photon-counting noise and sky radiance. Rank annihilation calculations were also compared with calculations done by two other detection algorithms: finding peak wavelengths and the least-squares technique. Rank annihilation is better than both techniques. |
doi_str_mv | 10.1364/AO.31.004214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_748967966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748967966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-3059272aba0aa67f646fbf332564f328566218963f6addd508fc06071ef121573</originalsourceid><addsrcrecordid>eNp90DFPwzAQBWALgWgpbMwoA4KFlLPPdpKBoaooIFXqArPlxrZqSBOwU6H-e4xaOjLd8t270yPkksKYouT3k8UY6RiAM8qPyJAKrHIuGDsmQwDAXFYoBuQsxncAykpZnZIBg4IJDmJIHmbNpgs21ratbdZ4o0NmbG_r3ndt9u37VRZXXZ-1nY82063J4sc2C9p4nRbOyYnTTbQX-zkib7PH1-lzPl88vUwn87xGXvY5gqhYwfRSg9aycJJLt3SITEjukJVCSkbLSqKT2hgjoHQ1SCiodZRRUeCI3O5yP0P3tbGxV2ufXm4a3dpuE1XB03ZRSZnkzb8yncSSV5Dg3Q7WoYsxWKc-g1_rsFUU1G-xarJQSNWu2MSv9rmb5dqaA_5rMoHrPdCx1o0LqR8fD44jpQIY_gD1qn1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25638490</pqid></control><display><type>article</type><title>Fluorescence lidar detection with shot noise and sky radiance</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>ROSEN, D. L ; GILLESPIE, J. B</creator><creatorcontrib>ROSEN, D. L ; GILLESPIE, J. B</creatorcontrib><description>Rank annihilation-factor analysis is potentially the best method of analyzing fluorescence lidar returns because of the following capability. Rank annihilation can recognize a fluorescence signal of a component that is hidden by a large fluorescence background without a spectrum of that background. Theoretical models were developed to analyze the effectiveness of rank annihilation-factor analysis in the interpretation of lidar returns. Interferents such as background fluorescence, photon-counting noise, sky radiance, and atmospheric extinction degraded the lidar-return spectra in numerical simulations. The rank annihilation-factor analysis detection algorithm was most severely biased by the combination of photon-counting noise and sky radiance. Rank annihilation calculations were also compared with calculations done by two other detection algorithms: finding peak wavelengths and the least-squares technique. Rank annihilation is better than both techniques.</description><identifier>ISSN: 0003-6935</identifier><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.31.004214</identifier><identifier>PMID: 20725405</identifier><identifier>CODEN: APOPAI</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Atmospheric optics ; Earth, ocean, space ; Exact sciences and technology ; External geophysics</subject><ispartof>Applied Optics, 1992-07, Vol.31 (21), p.4214-4223</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-3059272aba0aa67f646fbf332564f328566218963f6addd508fc06071ef121573</citedby><cites>FETCH-LOGICAL-c348t-3059272aba0aa67f646fbf332564f328566218963f6addd508fc06071ef121573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4311502$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20725405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ROSEN, D. L</creatorcontrib><creatorcontrib>GILLESPIE, J. B</creatorcontrib><title>Fluorescence lidar detection with shot noise and sky radiance</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>Rank annihilation-factor analysis is potentially the best method of analyzing fluorescence lidar returns because of the following capability. Rank annihilation can recognize a fluorescence signal of a component that is hidden by a large fluorescence background without a spectrum of that background. Theoretical models were developed to analyze the effectiveness of rank annihilation-factor analysis in the interpretation of lidar returns. Interferents such as background fluorescence, photon-counting noise, sky radiance, and atmospheric extinction degraded the lidar-return spectra in numerical simulations. The rank annihilation-factor analysis detection algorithm was most severely biased by the combination of photon-counting noise and sky radiance. Rank annihilation calculations were also compared with calculations done by two other detection algorithms: finding peak wavelengths and the least-squares technique. Rank annihilation is better than both techniques.</description><subject>Atmospheric optics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><issn>0003-6935</issn><issn>1559-128X</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp90DFPwzAQBWALgWgpbMwoA4KFlLPPdpKBoaooIFXqArPlxrZqSBOwU6H-e4xaOjLd8t270yPkksKYouT3k8UY6RiAM8qPyJAKrHIuGDsmQwDAXFYoBuQsxncAykpZnZIBg4IJDmJIHmbNpgs21ratbdZ4o0NmbG_r3ndt9u37VRZXXZ-1nY82063J4sc2C9p4nRbOyYnTTbQX-zkib7PH1-lzPl88vUwn87xGXvY5gqhYwfRSg9aycJJLt3SITEjukJVCSkbLSqKT2hgjoHQ1SCiodZRRUeCI3O5yP0P3tbGxV2ufXm4a3dpuE1XB03ZRSZnkzb8yncSSV5Dg3Q7WoYsxWKc-g1_rsFUU1G-xarJQSNWu2MSv9rmb5dqaA_5rMoHrPdCx1o0LqR8fD44jpQIY_gD1qn1s</recordid><startdate>19920720</startdate><enddate>19920720</enddate><creator>ROSEN, D. L</creator><creator>GILLESPIE, J. B</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>19920720</creationdate><title>Fluorescence lidar detection with shot noise and sky radiance</title><author>ROSEN, D. L ; GILLESPIE, J. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-3059272aba0aa67f646fbf332564f328566218963f6addd508fc06071ef121573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Atmospheric optics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROSEN, D. L</creatorcontrib><creatorcontrib>GILLESPIE, J. B</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROSEN, D. L</au><au>GILLESPIE, J. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence lidar detection with shot noise and sky radiance</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>1992-07-20</date><risdate>1992</risdate><volume>31</volume><issue>21</issue><spage>4214</spage><epage>4223</epage><pages>4214-4223</pages><issn>0003-6935</issn><issn>1559-128X</issn><eissn>1539-4522</eissn><coden>APOPAI</coden><abstract>Rank annihilation-factor analysis is potentially the best method of analyzing fluorescence lidar returns because of the following capability. Rank annihilation can recognize a fluorescence signal of a component that is hidden by a large fluorescence background without a spectrum of that background. Theoretical models were developed to analyze the effectiveness of rank annihilation-factor analysis in the interpretation of lidar returns. Interferents such as background fluorescence, photon-counting noise, sky radiance, and atmospheric extinction degraded the lidar-return spectra in numerical simulations. The rank annihilation-factor analysis detection algorithm was most severely biased by the combination of photon-counting noise and sky radiance. Rank annihilation calculations were also compared with calculations done by two other detection algorithms: finding peak wavelengths and the least-squares technique. Rank annihilation is better than both techniques.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>20725405</pmid><doi>10.1364/AO.31.004214</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6935 |
ispartof | Applied Optics, 1992-07, Vol.31 (21), p.4214-4223 |
issn | 0003-6935 1559-128X 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_748967966 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Atmospheric optics Earth, ocean, space Exact sciences and technology External geophysics |
title | Fluorescence lidar detection with shot noise and sky radiance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence%20lidar%20detection%20with%20shot%20noise%20and%20sky%20radiance&rft.jtitle=Applied%20Optics&rft.au=ROSEN,%20D.%20L&rft.date=1992-07-20&rft.volume=31&rft.issue=21&rft.spage=4214&rft.epage=4223&rft.pages=4214-4223&rft.issn=0003-6935&rft.eissn=1539-4522&rft.coden=APOPAI&rft_id=info:doi/10.1364/AO.31.004214&rft_dat=%3Cproquest_cross%3E748967966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25638490&rft_id=info:pmid/20725405&rfr_iscdi=true |