Genetic background affects function and intracellular calcium regulation of mouse hearts

Aims The genetic background is currently under close scrutiny when determining cardiovascular disease progression and response to therapy. However, this factor is rarely considered in physiological studies, where it could influence the normal behaviour and adaptive responses of the heart. We aim to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2010-09, Vol.87 (4), p.683-693
Hauptverfasser: Shah, Adarsh P., Siedlecka, Urszula, Gandhi, Ajay, Navaratnarajah, Manoraj, Abou Al-Saud, Sara, Yacoub, Magdi H., Terracciano, Cesare M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue 4
container_start_page 683
container_title Cardiovascular research
container_volume 87
creator Shah, Adarsh P.
Siedlecka, Urszula
Gandhi, Ajay
Navaratnarajah, Manoraj
Abou Al-Saud, Sara
Yacoub, Magdi H.
Terracciano, Cesare M.
description Aims The genetic background is currently under close scrutiny when determining cardiovascular disease progression and response to therapy. However, this factor is rarely considered in physiological studies, where it could influence the normal behaviour and adaptive responses of the heart. We aim to test the hypothesis that genetic strain variability is associated with differences in excitation–contraction coupling mechanisms, in particular those involved in cytoplasmic Ca2+ regulation, and that they are concomitant to differences in whole-heart function and cell morphology. Methods and results We studied 8- to 10-week-old male C57BL/6, BALB/C, FVB, and SV129 mice. Echocardiography and radiotelemetry were used to assess cardiac function in vivo. FVB mice had increased left ventricular ejection fraction and fractional shortening with significantly faster heart rate (HR) and lack of diurnal variation of HR. Confocal microscopy, sarcomere length tracking, and epifluorescence were used to investigate cell volume, t-tubule density, contractility, and Ca2+ handling in isolated ventricular myocytes. Sarcomere relaxation and time-to-peak of the Ca2+ transient were prolonged in BALB/C myocytes, with more frequent Ca2+ sparks and significantly higher sarcoplasmic reticulum (SR) Ca2+ leak. There were no strain differences in the contribution of different Ca2+ extrusion mechanisms. SV129 had reduced SR Ca2+ leak with elevated SR Ca2+ content and smaller cell volume and t-tubule density compared with myocytes from other strains. Conclusion These results demonstrate that a different genetic background is associated with physiological differences in cardiac function in vivo and differences in morphology, contractility, and Ca2+ handling at the cellular level.
doi_str_mv 10.1093/cvr/cvq111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_748947271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748947271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-96f6f31c35ae06d238d8487ab9d40a019849f93036332c9d33d36c4d2c80acc93</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMotl5e_AGyb4KwmuzksnkU0VYoKFKl-BLSbFLX7qUmu6L_3tTWPgzDzHwczhyEzgi-IljCtfnysT4JIXtoSARjKWSU7aMhxjhPOXAYoKMQPuLImKCHaJBhSoAzMkSzkW1sV5pkrs1y4du-KRLtnDVdSFzfmK5sm0THZdl0XhtbVX2lfWJ0Zcq-TrxdxPkPal1St32wybvVvgsn6MDpKtjTbT9GL_d309txOnkcPdzeTFJDuehSyR13QAwwbTEvMsiLnOZCz2VBscZE5lQ6CTg-AZmRBUAB3NAiMznWxkg4Rhcb3ZVvP3sbOlWXYe1TNzbaUYLmkopMkEhebkjj2xC8dWrly1r7H0WwWgepYpBqE2SEz7ey_by2xQ79Ty4C6QYoQ2e_d3ftl4oLEEyNZ2_q6RnGbDp6Vc_wC26Yf3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748947271</pqid></control><display><type>article</type><title>Genetic background affects function and intracellular calcium regulation of mouse hearts</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Shah, Adarsh P. ; Siedlecka, Urszula ; Gandhi, Ajay ; Navaratnarajah, Manoraj ; Abou Al-Saud, Sara ; Yacoub, Magdi H. ; Terracciano, Cesare M.</creator><creatorcontrib>Shah, Adarsh P. ; Siedlecka, Urszula ; Gandhi, Ajay ; Navaratnarajah, Manoraj ; Abou Al-Saud, Sara ; Yacoub, Magdi H. ; Terracciano, Cesare M.</creatorcontrib><description>Aims The genetic background is currently under close scrutiny when determining cardiovascular disease progression and response to therapy. However, this factor is rarely considered in physiological studies, where it could influence the normal behaviour and adaptive responses of the heart. We aim to test the hypothesis that genetic strain variability is associated with differences in excitation–contraction coupling mechanisms, in particular those involved in cytoplasmic Ca2+ regulation, and that they are concomitant to differences in whole-heart function and cell morphology. Methods and results We studied 8- to 10-week-old male C57BL/6, BALB/C, FVB, and SV129 mice. Echocardiography and radiotelemetry were used to assess cardiac function in vivo. FVB mice had increased left ventricular ejection fraction and fractional shortening with significantly faster heart rate (HR) and lack of diurnal variation of HR. Confocal microscopy, sarcomere length tracking, and epifluorescence were used to investigate cell volume, t-tubule density, contractility, and Ca2+ handling in isolated ventricular myocytes. Sarcomere relaxation and time-to-peak of the Ca2+ transient were prolonged in BALB/C myocytes, with more frequent Ca2+ sparks and significantly higher sarcoplasmic reticulum (SR) Ca2+ leak. There were no strain differences in the contribution of different Ca2+ extrusion mechanisms. SV129 had reduced SR Ca2+ leak with elevated SR Ca2+ content and smaller cell volume and t-tubule density compared with myocytes from other strains. Conclusion These results demonstrate that a different genetic background is associated with physiological differences in cardiac function in vivo and differences in morphology, contractility, and Ca2+ handling at the cellular level.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvq111</identifier><identifier>PMID: 20413651</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Ca2+ spark ; Ca2+ transient ; Calcium - metabolism ; Cell Size ; Circadian Rhythm - genetics ; EC coupling ; Electrocardiography ; Excitation Contraction Coupling - genetics ; Genotype ; Heart Rate - genetics ; Heart Ventricles - diagnostic imaging ; Heart Ventricles - metabolism ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Microscopy, Confocal ; Myocardial Contraction - genetics ; Myocardium - metabolism ; Phenotype ; Sarcoplasmic Reticulum - metabolism ; Species Specificity ; Strain ; Stroke Volume - genetics ; Telemetry ; Transgenic mice ; Ultrasonography ; Ventricular Function, Left - genetics</subject><ispartof>Cardiovascular research, 2010-09, Vol.87 (4), p.683-693</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-96f6f31c35ae06d238d8487ab9d40a019849f93036332c9d33d36c4d2c80acc93</citedby><cites>FETCH-LOGICAL-c467t-96f6f31c35ae06d238d8487ab9d40a019849f93036332c9d33d36c4d2c80acc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20413651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Adarsh P.</creatorcontrib><creatorcontrib>Siedlecka, Urszula</creatorcontrib><creatorcontrib>Gandhi, Ajay</creatorcontrib><creatorcontrib>Navaratnarajah, Manoraj</creatorcontrib><creatorcontrib>Abou Al-Saud, Sara</creatorcontrib><creatorcontrib>Yacoub, Magdi H.</creatorcontrib><creatorcontrib>Terracciano, Cesare M.</creatorcontrib><title>Genetic background affects function and intracellular calcium regulation of mouse hearts</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Aims The genetic background is currently under close scrutiny when determining cardiovascular disease progression and response to therapy. However, this factor is rarely considered in physiological studies, where it could influence the normal behaviour and adaptive responses of the heart. We aim to test the hypothesis that genetic strain variability is associated with differences in excitation–contraction coupling mechanisms, in particular those involved in cytoplasmic Ca2+ regulation, and that they are concomitant to differences in whole-heart function and cell morphology. Methods and results We studied 8- to 10-week-old male C57BL/6, BALB/C, FVB, and SV129 mice. Echocardiography and radiotelemetry were used to assess cardiac function in vivo. FVB mice had increased left ventricular ejection fraction and fractional shortening with significantly faster heart rate (HR) and lack of diurnal variation of HR. Confocal microscopy, sarcomere length tracking, and epifluorescence were used to investigate cell volume, t-tubule density, contractility, and Ca2+ handling in isolated ventricular myocytes. Sarcomere relaxation and time-to-peak of the Ca2+ transient were prolonged in BALB/C myocytes, with more frequent Ca2+ sparks and significantly higher sarcoplasmic reticulum (SR) Ca2+ leak. There were no strain differences in the contribution of different Ca2+ extrusion mechanisms. SV129 had reduced SR Ca2+ leak with elevated SR Ca2+ content and smaller cell volume and t-tubule density compared with myocytes from other strains. Conclusion These results demonstrate that a different genetic background is associated with physiological differences in cardiac function in vivo and differences in morphology, contractility, and Ca2+ handling at the cellular level.</description><subject>Animals</subject><subject>Ca2+ spark</subject><subject>Ca2+ transient</subject><subject>Calcium - metabolism</subject><subject>Cell Size</subject><subject>Circadian Rhythm - genetics</subject><subject>EC coupling</subject><subject>Electrocardiography</subject><subject>Excitation Contraction Coupling - genetics</subject><subject>Genotype</subject><subject>Heart Rate - genetics</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Heart Ventricles - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Confocal</subject><subject>Myocardial Contraction - genetics</subject><subject>Myocardium - metabolism</subject><subject>Phenotype</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Species Specificity</subject><subject>Strain</subject><subject>Stroke Volume - genetics</subject><subject>Telemetry</subject><subject>Transgenic mice</subject><subject>Ultrasonography</subject><subject>Ventricular Function, Left - genetics</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kFtLAzEQhYMotl5e_AGyb4KwmuzksnkU0VYoKFKl-BLSbFLX7qUmu6L_3tTWPgzDzHwczhyEzgi-IljCtfnysT4JIXtoSARjKWSU7aMhxjhPOXAYoKMQPuLImKCHaJBhSoAzMkSzkW1sV5pkrs1y4du-KRLtnDVdSFzfmK5sm0THZdl0XhtbVX2lfWJ0Zcq-TrxdxPkPal1St32wybvVvgsn6MDpKtjTbT9GL_d309txOnkcPdzeTFJDuehSyR13QAwwbTEvMsiLnOZCz2VBscZE5lQ6CTg-AZmRBUAB3NAiMznWxkg4Rhcb3ZVvP3sbOlWXYe1TNzbaUYLmkopMkEhebkjj2xC8dWrly1r7H0WwWgepYpBqE2SEz7ey_by2xQ79Ty4C6QYoQ2e_d3ftl4oLEEyNZ2_q6RnGbDp6Vc_wC26Yf3o</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Shah, Adarsh P.</creator><creator>Siedlecka, Urszula</creator><creator>Gandhi, Ajay</creator><creator>Navaratnarajah, Manoraj</creator><creator>Abou Al-Saud, Sara</creator><creator>Yacoub, Magdi H.</creator><creator>Terracciano, Cesare M.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100901</creationdate><title>Genetic background affects function and intracellular calcium regulation of mouse hearts</title><author>Shah, Adarsh P. ; Siedlecka, Urszula ; Gandhi, Ajay ; Navaratnarajah, Manoraj ; Abou Al-Saud, Sara ; Yacoub, Magdi H. ; Terracciano, Cesare M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-96f6f31c35ae06d238d8487ab9d40a019849f93036332c9d33d36c4d2c80acc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Ca2+ spark</topic><topic>Ca2+ transient</topic><topic>Calcium - metabolism</topic><topic>Cell Size</topic><topic>Circadian Rhythm - genetics</topic><topic>EC coupling</topic><topic>Electrocardiography</topic><topic>Excitation Contraction Coupling - genetics</topic><topic>Genotype</topic><topic>Heart Rate - genetics</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Heart Ventricles - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Confocal</topic><topic>Myocardial Contraction - genetics</topic><topic>Myocardium - metabolism</topic><topic>Phenotype</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Species Specificity</topic><topic>Strain</topic><topic>Stroke Volume - genetics</topic><topic>Telemetry</topic><topic>Transgenic mice</topic><topic>Ultrasonography</topic><topic>Ventricular Function, Left - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Adarsh P.</creatorcontrib><creatorcontrib>Siedlecka, Urszula</creatorcontrib><creatorcontrib>Gandhi, Ajay</creatorcontrib><creatorcontrib>Navaratnarajah, Manoraj</creatorcontrib><creatorcontrib>Abou Al-Saud, Sara</creatorcontrib><creatorcontrib>Yacoub, Magdi H.</creatorcontrib><creatorcontrib>Terracciano, Cesare M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Adarsh P.</au><au>Siedlecka, Urszula</au><au>Gandhi, Ajay</au><au>Navaratnarajah, Manoraj</au><au>Abou Al-Saud, Sara</au><au>Yacoub, Magdi H.</au><au>Terracciano, Cesare M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic background affects function and intracellular calcium regulation of mouse hearts</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>87</volume><issue>4</issue><spage>683</spage><epage>693</epage><pages>683-693</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><abstract>Aims The genetic background is currently under close scrutiny when determining cardiovascular disease progression and response to therapy. However, this factor is rarely considered in physiological studies, where it could influence the normal behaviour and adaptive responses of the heart. We aim to test the hypothesis that genetic strain variability is associated with differences in excitation–contraction coupling mechanisms, in particular those involved in cytoplasmic Ca2+ regulation, and that they are concomitant to differences in whole-heart function and cell morphology. Methods and results We studied 8- to 10-week-old male C57BL/6, BALB/C, FVB, and SV129 mice. Echocardiography and radiotelemetry were used to assess cardiac function in vivo. FVB mice had increased left ventricular ejection fraction and fractional shortening with significantly faster heart rate (HR) and lack of diurnal variation of HR. Confocal microscopy, sarcomere length tracking, and epifluorescence were used to investigate cell volume, t-tubule density, contractility, and Ca2+ handling in isolated ventricular myocytes. Sarcomere relaxation and time-to-peak of the Ca2+ transient were prolonged in BALB/C myocytes, with more frequent Ca2+ sparks and significantly higher sarcoplasmic reticulum (SR) Ca2+ leak. There were no strain differences in the contribution of different Ca2+ extrusion mechanisms. SV129 had reduced SR Ca2+ leak with elevated SR Ca2+ content and smaller cell volume and t-tubule density compared with myocytes from other strains. Conclusion These results demonstrate that a different genetic background is associated with physiological differences in cardiac function in vivo and differences in morphology, contractility, and Ca2+ handling at the cellular level.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>20413651</pmid><doi>10.1093/cvr/cvq111</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6363
ispartof Cardiovascular research, 2010-09, Vol.87 (4), p.683-693
issn 0008-6363
1755-3245
language eng
recordid cdi_proquest_miscellaneous_748947271
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Ca2+ spark
Ca2+ transient
Calcium - metabolism
Cell Size
Circadian Rhythm - genetics
EC coupling
Electrocardiography
Excitation Contraction Coupling - genetics
Genotype
Heart Rate - genetics
Heart Ventricles - diagnostic imaging
Heart Ventricles - metabolism
Male
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Microscopy, Confocal
Myocardial Contraction - genetics
Myocardium - metabolism
Phenotype
Sarcoplasmic Reticulum - metabolism
Species Specificity
Strain
Stroke Volume - genetics
Telemetry
Transgenic mice
Ultrasonography
Ventricular Function, Left - genetics
title Genetic background affects function and intracellular calcium regulation of mouse hearts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20background%20affects%20function%20and%20intracellular%20calcium%20regulation%20of%20mouse%20hearts&rft.jtitle=Cardiovascular%20research&rft.au=Shah,%20Adarsh%20P.&rft.date=2010-09-01&rft.volume=87&rft.issue=4&rft.spage=683&rft.epage=693&rft.pages=683-693&rft.issn=0008-6363&rft.eissn=1755-3245&rft_id=info:doi/10.1093/cvr/cvq111&rft_dat=%3Cproquest_cross%3E748947271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748947271&rft_id=info:pmid/20413651&rfr_iscdi=true