Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei

Methanosarcina mazei belongs to the group of aceticlastic methanogens and converts acetate into the potent greenhouse gases CO₂ and CH₄. The aceticlastic respiratory chain involved in methane formation comprises the three transmembrane proteins Ech hydrogenase, F₄₂₀ nonreducing hydrogenase and heter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2010-08, Vol.277 (16), p.3396-3403
Hauptverfasser: Welte, Cornelia, Krätzer, Christian, Deppenmeier, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3403
container_issue 16
container_start_page 3396
container_title The FEBS journal
container_volume 277
creator Welte, Cornelia
Krätzer, Christian
Deppenmeier, Uwe
description Methanosarcina mazei belongs to the group of aceticlastic methanogens and converts acetate into the potent greenhouse gases CO₂ and CH₄. The aceticlastic respiratory chain involved in methane formation comprises the three transmembrane proteins Ech hydrogenase, F₄₂₀ nonreducing hydrogenase and heterodisulfide reductase. It has been shown that the latter two contribute to the proton motive force. The data presented here clearly demonstrate that Ech hydrogenase is also involved in energy conservation. ATP synthesis was observed in a cytoplasm-free vesicular system of Ms. mazei that was dependent on the oxidation of reduced ferredoxin and the formation of molecular hydrogen (as catalysed by Ech hydrogenase). Such an ATP formation was not observed in a Δech mutant strain. The protonophore 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile (SF6847) led to complete inhibition of ATP formation in the Ms. mazei wild-type without inhibiting hydrogen production by Ech hydrogenase, whereas the sodium ion ionophore ETH157 did not affect ATP formation in this system. Thus, we conclude that Ech hydrogenase acts as primary proton pump in a ferredoxin-dependent electron transport system.
doi_str_mv 10.1111/j.1742-4658.2010.07744.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_748946892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748946892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5364-cdf306f2ed6416a56eb3b90029aed4cc1f2a437562674d2bc96a8c8acb5953663</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0E4qPwFyBiYWpxHMeOFySoWqhExQBIbJbjXNpUiV3strT8ehwKHZjw4pP93KO7F6Eoxr04nOtZL-aUdClLsx7B4RVzTmlvvYeOdx_7u5q-HaET72cYJykV4hAdEcyI4DQ7RuORWdl6BQ2YRWTLaKCn0XRTODsBozxElYnAgJtsIm2NB7dSi8qalhzDYqqM9crpyqioUZ9QnaKDUtUezn7uDnodDl76D93Hp_tR__axq9OE0a4uygSzkkDBaMxUyiBPcoExEQoKqnVcEkUTnjLCOC1IrgVTmc6UzlMRBCzpoKutd-7s-xL8QjaV11DXyoBdehlWE5RlggTy8g85s0tnwnCSp5iSGPNWl20h7az3Dko5d1Wj3EbGWLaBy5lss5RtrrINXH4HLteh9fzHv8wbKHaNvwkH4GYLfFQ1bP4tlsPB3XNbBsHFVlAqK9XEVV6-Pgc0wXEWVuAi-QKvZpgX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750421076</pqid></control><display><type>article</type><title>Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei</title><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Welte, Cornelia ; Krätzer, Christian ; Deppenmeier, Uwe</creator><creatorcontrib>Welte, Cornelia ; Krätzer, Christian ; Deppenmeier, Uwe</creatorcontrib><description>Methanosarcina mazei belongs to the group of aceticlastic methanogens and converts acetate into the potent greenhouse gases CO₂ and CH₄. The aceticlastic respiratory chain involved in methane formation comprises the three transmembrane proteins Ech hydrogenase, F₄₂₀ nonreducing hydrogenase and heterodisulfide reductase. It has been shown that the latter two contribute to the proton motive force. The data presented here clearly demonstrate that Ech hydrogenase is also involved in energy conservation. ATP synthesis was observed in a cytoplasm-free vesicular system of Ms. mazei that was dependent on the oxidation of reduced ferredoxin and the formation of molecular hydrogen (as catalysed by Ech hydrogenase). Such an ATP formation was not observed in a Δech mutant strain. The protonophore 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile (SF6847) led to complete inhibition of ATP formation in the Ms. mazei wild-type without inhibiting hydrogen production by Ech hydrogenase, whereas the sodium ion ionophore ETH157 did not affect ATP formation in this system. Thus, we conclude that Ech hydrogenase acts as primary proton pump in a ferredoxin-dependent electron transport system.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2010.07744.x</identifier><identifier>PMID: 20629748</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Adenosine triphosphatase ; Adenosine Triphosphate - biosynthesis ; Archaea ; Biochemistry ; Carbon dioxide ; electron transfer ; electron transport ; Electron Transport Chain Complex Proteins - metabolism ; electron transport phosphorylation ; Energy Metabolism ; Ferredoxins - metabolism ; Methane ; methane production ; methanogenesis ; Methanosarcina - enzymology ; Models, Biological ; Oxidoreductases - metabolism ; Proteins ; proton motive force ; proton pump ; Protons</subject><ispartof>The FEBS journal, 2010-08, Vol.277 (16), p.3396-3403</ispartof><rights>2010 The Authors Journal compilation © 2010 FEBS</rights><rights>Journal compilation © 2010 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5364-cdf306f2ed6416a56eb3b90029aed4cc1f2a437562674d2bc96a8c8acb5953663</citedby><cites>FETCH-LOGICAL-c5364-cdf306f2ed6416a56eb3b90029aed4cc1f2a437562674d2bc96a8c8acb5953663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2010.07744.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2010.07744.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20629748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Welte, Cornelia</creatorcontrib><creatorcontrib>Krätzer, Christian</creatorcontrib><creatorcontrib>Deppenmeier, Uwe</creatorcontrib><title>Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Methanosarcina mazei belongs to the group of aceticlastic methanogens and converts acetate into the potent greenhouse gases CO₂ and CH₄. The aceticlastic respiratory chain involved in methane formation comprises the three transmembrane proteins Ech hydrogenase, F₄₂₀ nonreducing hydrogenase and heterodisulfide reductase. It has been shown that the latter two contribute to the proton motive force. The data presented here clearly demonstrate that Ech hydrogenase is also involved in energy conservation. ATP synthesis was observed in a cytoplasm-free vesicular system of Ms. mazei that was dependent on the oxidation of reduced ferredoxin and the formation of molecular hydrogen (as catalysed by Ech hydrogenase). Such an ATP formation was not observed in a Δech mutant strain. The protonophore 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile (SF6847) led to complete inhibition of ATP formation in the Ms. mazei wild-type without inhibiting hydrogen production by Ech hydrogenase, whereas the sodium ion ionophore ETH157 did not affect ATP formation in this system. Thus, we conclude that Ech hydrogenase acts as primary proton pump in a ferredoxin-dependent electron transport system.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Archaea</subject><subject>Biochemistry</subject><subject>Carbon dioxide</subject><subject>electron transfer</subject><subject>electron transport</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>electron transport phosphorylation</subject><subject>Energy Metabolism</subject><subject>Ferredoxins - metabolism</subject><subject>Methane</subject><subject>methane production</subject><subject>methanogenesis</subject><subject>Methanosarcina - enzymology</subject><subject>Models, Biological</subject><subject>Oxidoreductases - metabolism</subject><subject>Proteins</subject><subject>proton motive force</subject><subject>proton pump</subject><subject>Protons</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkD1PwzAQhi0E4qPwFyBiYWpxHMeOFySoWqhExQBIbJbjXNpUiV3strT8ehwKHZjw4pP93KO7F6Eoxr04nOtZL-aUdClLsx7B4RVzTmlvvYeOdx_7u5q-HaET72cYJykV4hAdEcyI4DQ7RuORWdl6BQ2YRWTLaKCn0XRTODsBozxElYnAgJtsIm2NB7dSi8qalhzDYqqM9crpyqioUZ9QnaKDUtUezn7uDnodDl76D93Hp_tR__axq9OE0a4uygSzkkDBaMxUyiBPcoExEQoKqnVcEkUTnjLCOC1IrgVTmc6UzlMRBCzpoKutd-7s-xL8QjaV11DXyoBdehlWE5RlggTy8g85s0tnwnCSp5iSGPNWl20h7az3Dko5d1Wj3EbGWLaBy5lss5RtrrINXH4HLteh9fzHv8wbKHaNvwkH4GYLfFQ1bP4tlsPB3XNbBsHFVlAqK9XEVV6-Pgc0wXEWVuAi-QKvZpgX</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Welte, Cornelia</creator><creator>Krätzer, Christian</creator><creator>Deppenmeier, Uwe</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201008</creationdate><title>Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei</title><author>Welte, Cornelia ; Krätzer, Christian ; Deppenmeier, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5364-cdf306f2ed6416a56eb3b90029aed4cc1f2a437562674d2bc96a8c8acb5953663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Archaea</topic><topic>Biochemistry</topic><topic>Carbon dioxide</topic><topic>electron transfer</topic><topic>electron transport</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>electron transport phosphorylation</topic><topic>Energy Metabolism</topic><topic>Ferredoxins - metabolism</topic><topic>Methane</topic><topic>methane production</topic><topic>methanogenesis</topic><topic>Methanosarcina - enzymology</topic><topic>Models, Biological</topic><topic>Oxidoreductases - metabolism</topic><topic>Proteins</topic><topic>proton motive force</topic><topic>proton pump</topic><topic>Protons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Welte, Cornelia</creatorcontrib><creatorcontrib>Krätzer, Christian</creatorcontrib><creatorcontrib>Deppenmeier, Uwe</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Welte, Cornelia</au><au>Krätzer, Christian</au><au>Deppenmeier, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2010-08</date><risdate>2010</risdate><volume>277</volume><issue>16</issue><spage>3396</spage><epage>3403</epage><pages>3396-3403</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Methanosarcina mazei belongs to the group of aceticlastic methanogens and converts acetate into the potent greenhouse gases CO₂ and CH₄. The aceticlastic respiratory chain involved in methane formation comprises the three transmembrane proteins Ech hydrogenase, F₄₂₀ nonreducing hydrogenase and heterodisulfide reductase. It has been shown that the latter two contribute to the proton motive force. The data presented here clearly demonstrate that Ech hydrogenase is also involved in energy conservation. ATP synthesis was observed in a cytoplasm-free vesicular system of Ms. mazei that was dependent on the oxidation of reduced ferredoxin and the formation of molecular hydrogen (as catalysed by Ech hydrogenase). Such an ATP formation was not observed in a Δech mutant strain. The protonophore 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile (SF6847) led to complete inhibition of ATP formation in the Ms. mazei wild-type without inhibiting hydrogen production by Ech hydrogenase, whereas the sodium ion ionophore ETH157 did not affect ATP formation in this system. Thus, we conclude that Ech hydrogenase acts as primary proton pump in a ferredoxin-dependent electron transport system.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20629748</pmid><doi>10.1111/j.1742-4658.2010.07744.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2010-08, Vol.277 (16), p.3396-3403
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_748946892
source MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry
subjects Adenosine triphosphatase
Adenosine Triphosphate - biosynthesis
Archaea
Biochemistry
Carbon dioxide
electron transfer
electron transport
Electron Transport Chain Complex Proteins - metabolism
electron transport phosphorylation
Energy Metabolism
Ferredoxins - metabolism
Methane
methane production
methanogenesis
Methanosarcina - enzymology
Models, Biological
Oxidoreductases - metabolism
Proteins
proton motive force
proton pump
Protons
title Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A17%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20Ech%20hydrogenase%20in%20energy%20conservation%20of%20Methanosarcina%20mazei&rft.jtitle=The%20FEBS%20journal&rft.au=Welte,%20Cornelia&rft.date=2010-08&rft.volume=277&rft.issue=16&rft.spage=3396&rft.epage=3403&rft.pages=3396-3403&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2010.07744.x&rft_dat=%3Cproquest_cross%3E748946892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750421076&rft_id=info:pmid/20629748&rfr_iscdi=true