New Generalization of Supersymmetric Quantum Mechanics to Arbitrary Dimensionality or Number of Distinguishable Particles

We present here a new approach to generalize supersymmetric quantum mechanics to treat multiparticle and multidimensional systems. We do this by introducing a vector superpotential in an orthogonal hyperspace. In the case of N distinguishable particles in three dimensions this results in a vector su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2010-08, Vol.114 (32), p.8202-8216
Hauptverfasser: Kouri, Donald J, Maji, Kaushik, Markovich, Thomas, Bittner, Eric R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8216
container_issue 32
container_start_page 8202
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 114
creator Kouri, Donald J
Maji, Kaushik
Markovich, Thomas
Bittner, Eric R
description We present here a new approach to generalize supersymmetric quantum mechanics to treat multiparticle and multidimensional systems. We do this by introducing a vector superpotential in an orthogonal hyperspace. In the case of N distinguishable particles in three dimensions this results in a vector superpotential with 3N orthogonal components. The original scalar Schrödinger operator can be factored using a 3N-component gradient operator and introducing vector “charge” operators: Q⃗ 1 and Q⃗ 1 †. Using these operators, we can write the original (scalar) Hamiltonian as H 1 = Q⃗ 1 †·Q⃗ 1 + E 0 (1), where E 0 (1) is the ground-state energy. The second sector Hamiltonian is a tensor given by H⃡ 2 = Q⃗ 1 Q⃗ 1 † + E 0 (1) and is isospectral with H 1. The vector ground state of sector 2, ψ⃗0 (2), can be used with the charge operator Q⃗ 1 † to obtain the excited-state wave function of the first sector. In addition, we show that H⃡ 2 can also be factored in terms of a sector 2 vector superpotential with components W 2j = −(∂ ln ψ0j (2))/∂x j . Here ψ0j (2) is the jth component of ψ⃗0 (2). Then one obtains charge operators Q⃗ 2 and Q⃗ 2 † so that the second sector Hamiltonian can be written as H⃡ 2 = Q⃗ 2 † Q⃗ 2 + E 0 (2). This allows us to define a third sector Hamiltonian which is a scalar, H 3 = Q⃗ 2·Q⃗ 2 † + E 0 (2). This prescription continues with the sector Hamiltonians alternating between scalar and tensor forms, both of which can be treated by the variational method to obtain approximate solutions to both scalar and tensor sectors. We demonstrate the approach with examples of a pair of separable 1D harmonic oscillators and the example of a nonseparable 2D anharmonic oscillator (or equivalently a pair of coupled 1D oscillators). We consider both degenerate and nondegenerate cases. We also present a generalization to arbitrary curvilinear coordinate systems in the Appendix.
doi_str_mv 10.1021/jp103309p
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_748942954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748942954</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-a1371f492596dbfa94e9fb6c192cb89876320e4bfb8c53b0affecd21068555ec3</originalsourceid><addsrcrecordid>eNptkMlKBDEQQIMo7gd_QHIR8dCapdPTOcq4givquUkyFc3Qm1mQ8euNjHryVHV49aAeQnuUHFPC6Ml8pIRzIscVtEkFI4VgVKzmndSyEBWXG2grhDkhhHJWrqMNRiZ55WQTLe7gA19CD1617lNFN_R4sPgpjeDDousgemfwY1J9TB2-BfOmemcCjgM-9dpFr_wCn7kO-pBPsyMu8ODxXeo0-G_TmQvR9a_JhTelW8APykdnWgg7aM2qNsDuz9xGLxfnz9Or4ub-8np6elMoTstYKMon1JaSCVnNtFWyBGl1ZahkRteynlScESi11bURXBNlLZgZo6SqhRBg-DY6XHpHP7wnCLHpXDDQtqqHIYVmUtayZFKUmTxaksYPIXiwzehdlx9sKGm-Qzd_oTO7_2NNuoPZH_lbNgMHS0CZ0MyH5HOc8I_oC2x7h0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748942954</pqid></control><display><type>article</type><title>New Generalization of Supersymmetric Quantum Mechanics to Arbitrary Dimensionality or Number of Distinguishable Particles</title><source>ACS Publications</source><creator>Kouri, Donald J ; Maji, Kaushik ; Markovich, Thomas ; Bittner, Eric R</creator><creatorcontrib>Kouri, Donald J ; Maji, Kaushik ; Markovich, Thomas ; Bittner, Eric R</creatorcontrib><description>We present here a new approach to generalize supersymmetric quantum mechanics to treat multiparticle and multidimensional systems. We do this by introducing a vector superpotential in an orthogonal hyperspace. In the case of N distinguishable particles in three dimensions this results in a vector superpotential with 3N orthogonal components. The original scalar Schrödinger operator can be factored using a 3N-component gradient operator and introducing vector “charge” operators: Q⃗ 1 and Q⃗ 1 †. Using these operators, we can write the original (scalar) Hamiltonian as H 1 = Q⃗ 1 †·Q⃗ 1 + E 0 (1), where E 0 (1) is the ground-state energy. The second sector Hamiltonian is a tensor given by H⃡ 2 = Q⃗ 1 Q⃗ 1 † + E 0 (1) and is isospectral with H 1. The vector ground state of sector 2, ψ⃗0 (2), can be used with the charge operator Q⃗ 1 † to obtain the excited-state wave function of the first sector. In addition, we show that H⃡ 2 can also be factored in terms of a sector 2 vector superpotential with components W 2j = −(∂ ln ψ0j (2))/∂x j . Here ψ0j (2) is the jth component of ψ⃗0 (2). Then one obtains charge operators Q⃗ 2 and Q⃗ 2 † so that the second sector Hamiltonian can be written as H⃡ 2 = Q⃗ 2 † Q⃗ 2 + E 0 (2). This allows us to define a third sector Hamiltonian which is a scalar, H 3 = Q⃗ 2·Q⃗ 2 † + E 0 (2). This prescription continues with the sector Hamiltonians alternating between scalar and tensor forms, both of which can be treated by the variational method to obtain approximate solutions to both scalar and tensor sectors. We demonstrate the approach with examples of a pair of separable 1D harmonic oscillators and the example of a nonseparable 2D anharmonic oscillator (or equivalently a pair of coupled 1D oscillators). We consider both degenerate and nondegenerate cases. We also present a generalization to arbitrary curvilinear coordinate systems in the Appendix.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp103309p</identifier><identifier>PMID: 20701330</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Dynamics, Clusters, Excited States</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2010-08, Vol.114 (32), p.8202-8216</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-a1371f492596dbfa94e9fb6c192cb89876320e4bfb8c53b0affecd21068555ec3</citedby><cites>FETCH-LOGICAL-a314t-a1371f492596dbfa94e9fb6c192cb89876320e4bfb8c53b0affecd21068555ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp103309p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp103309p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20701330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouri, Donald J</creatorcontrib><creatorcontrib>Maji, Kaushik</creatorcontrib><creatorcontrib>Markovich, Thomas</creatorcontrib><creatorcontrib>Bittner, Eric R</creatorcontrib><title>New Generalization of Supersymmetric Quantum Mechanics to Arbitrary Dimensionality or Number of Distinguishable Particles</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>We present here a new approach to generalize supersymmetric quantum mechanics to treat multiparticle and multidimensional systems. We do this by introducing a vector superpotential in an orthogonal hyperspace. In the case of N distinguishable particles in three dimensions this results in a vector superpotential with 3N orthogonal components. The original scalar Schrödinger operator can be factored using a 3N-component gradient operator and introducing vector “charge” operators: Q⃗ 1 and Q⃗ 1 †. Using these operators, we can write the original (scalar) Hamiltonian as H 1 = Q⃗ 1 †·Q⃗ 1 + E 0 (1), where E 0 (1) is the ground-state energy. The second sector Hamiltonian is a tensor given by H⃡ 2 = Q⃗ 1 Q⃗ 1 † + E 0 (1) and is isospectral with H 1. The vector ground state of sector 2, ψ⃗0 (2), can be used with the charge operator Q⃗ 1 † to obtain the excited-state wave function of the first sector. In addition, we show that H⃡ 2 can also be factored in terms of a sector 2 vector superpotential with components W 2j = −(∂ ln ψ0j (2))/∂x j . Here ψ0j (2) is the jth component of ψ⃗0 (2). Then one obtains charge operators Q⃗ 2 and Q⃗ 2 † so that the second sector Hamiltonian can be written as H⃡ 2 = Q⃗ 2 † Q⃗ 2 + E 0 (2). This allows us to define a third sector Hamiltonian which is a scalar, H 3 = Q⃗ 2·Q⃗ 2 † + E 0 (2). This prescription continues with the sector Hamiltonians alternating between scalar and tensor forms, both of which can be treated by the variational method to obtain approximate solutions to both scalar and tensor sectors. We demonstrate the approach with examples of a pair of separable 1D harmonic oscillators and the example of a nonseparable 2D anharmonic oscillator (or equivalently a pair of coupled 1D oscillators). We consider both degenerate and nondegenerate cases. We also present a generalization to arbitrary curvilinear coordinate systems in the Appendix.</description><subject>A: Dynamics, Clusters, Excited States</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkMlKBDEQQIMo7gd_QHIR8dCapdPTOcq4givquUkyFc3Qm1mQ8euNjHryVHV49aAeQnuUHFPC6Ml8pIRzIscVtEkFI4VgVKzmndSyEBWXG2grhDkhhHJWrqMNRiZ55WQTLe7gA19CD1617lNFN_R4sPgpjeDDousgemfwY1J9TB2-BfOmemcCjgM-9dpFr_wCn7kO-pBPsyMu8ODxXeo0-G_TmQvR9a_JhTelW8APykdnWgg7aM2qNsDuz9xGLxfnz9Or4ub-8np6elMoTstYKMon1JaSCVnNtFWyBGl1ZahkRteynlScESi11bURXBNlLZgZo6SqhRBg-DY6XHpHP7wnCLHpXDDQtqqHIYVmUtayZFKUmTxaksYPIXiwzehdlx9sKGm-Qzd_oTO7_2NNuoPZH_lbNgMHS0CZ0MyH5HOc8I_oC2x7h0c</recordid><startdate>20100819</startdate><enddate>20100819</enddate><creator>Kouri, Donald J</creator><creator>Maji, Kaushik</creator><creator>Markovich, Thomas</creator><creator>Bittner, Eric R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100819</creationdate><title>New Generalization of Supersymmetric Quantum Mechanics to Arbitrary Dimensionality or Number of Distinguishable Particles</title><author>Kouri, Donald J ; Maji, Kaushik ; Markovich, Thomas ; Bittner, Eric R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-a1371f492596dbfa94e9fb6c192cb89876320e4bfb8c53b0affecd21068555ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A: Dynamics, Clusters, Excited States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouri, Donald J</creatorcontrib><creatorcontrib>Maji, Kaushik</creatorcontrib><creatorcontrib>Markovich, Thomas</creatorcontrib><creatorcontrib>Bittner, Eric R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouri, Donald J</au><au>Maji, Kaushik</au><au>Markovich, Thomas</au><au>Bittner, Eric R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Generalization of Supersymmetric Quantum Mechanics to Arbitrary Dimensionality or Number of Distinguishable Particles</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2010-08-19</date><risdate>2010</risdate><volume>114</volume><issue>32</issue><spage>8202</spage><epage>8216</epage><pages>8202-8216</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>We present here a new approach to generalize supersymmetric quantum mechanics to treat multiparticle and multidimensional systems. We do this by introducing a vector superpotential in an orthogonal hyperspace. In the case of N distinguishable particles in three dimensions this results in a vector superpotential with 3N orthogonal components. The original scalar Schrödinger operator can be factored using a 3N-component gradient operator and introducing vector “charge” operators: Q⃗ 1 and Q⃗ 1 †. Using these operators, we can write the original (scalar) Hamiltonian as H 1 = Q⃗ 1 †·Q⃗ 1 + E 0 (1), where E 0 (1) is the ground-state energy. The second sector Hamiltonian is a tensor given by H⃡ 2 = Q⃗ 1 Q⃗ 1 † + E 0 (1) and is isospectral with H 1. The vector ground state of sector 2, ψ⃗0 (2), can be used with the charge operator Q⃗ 1 † to obtain the excited-state wave function of the first sector. In addition, we show that H⃡ 2 can also be factored in terms of a sector 2 vector superpotential with components W 2j = −(∂ ln ψ0j (2))/∂x j . Here ψ0j (2) is the jth component of ψ⃗0 (2). Then one obtains charge operators Q⃗ 2 and Q⃗ 2 † so that the second sector Hamiltonian can be written as H⃡ 2 = Q⃗ 2 † Q⃗ 2 + E 0 (2). This allows us to define a third sector Hamiltonian which is a scalar, H 3 = Q⃗ 2·Q⃗ 2 † + E 0 (2). This prescription continues with the sector Hamiltonians alternating between scalar and tensor forms, both of which can be treated by the variational method to obtain approximate solutions to both scalar and tensor sectors. We demonstrate the approach with examples of a pair of separable 1D harmonic oscillators and the example of a nonseparable 2D anharmonic oscillator (or equivalently a pair of coupled 1D oscillators). We consider both degenerate and nondegenerate cases. We also present a generalization to arbitrary curvilinear coordinate systems in the Appendix.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20701330</pmid><doi>10.1021/jp103309p</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2010-08, Vol.114 (32), p.8202-8216
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_748942954
source ACS Publications
subjects A: Dynamics, Clusters, Excited States
title New Generalization of Supersymmetric Quantum Mechanics to Arbitrary Dimensionality or Number of Distinguishable Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Generalization%20of%20Supersymmetric%20Quantum%20Mechanics%20to%20Arbitrary%20Dimensionality%20or%20Number%20of%20Distinguishable%20Particles&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Kouri,%20Donald%20J&rft.date=2010-08-19&rft.volume=114&rft.issue=32&rft.spage=8202&rft.epage=8216&rft.pages=8202-8216&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp103309p&rft_dat=%3Cproquest_cross%3E748942954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748942954&rft_id=info:pmid/20701330&rfr_iscdi=true