Osteogenic cells on bio-inspired materials for bone tissue engineering
This article reviews the development of artificial bone substitutes from their older single-phase forms to novel multi-phase composites, mimicking the composition and architecture of natural bone tissue. The new generation of bone implants should be bioactive, i.e. they should induce the desired cel...
Gespeichert in:
Veröffentlicht in: | Physiological research 2010-01, Vol.59 (3), p.309-322 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 3 |
container_start_page | 309 |
container_title | Physiological research |
container_volume | 59 |
creator | Vagaská, B Bacáková, L Filová, E Balík, K |
description | This article reviews the development of artificial bone substitutes from their older single-phase forms to novel multi-phase composites, mimicking the composition and architecture of natural bone tissue. The new generation of bone implants should be bioactive, i.e. they should induce the desired cellular responses, leading to integration of the material into the natural tissue and stimulating self-healing processes. Therefore, the first part of the review explains the common principles of the cell-material interaction and summarizes the strategies how to improve the biocompatibility and bioactivity of the materials by modifying the physico-chemical properties of the material surface, such as surface chemistry, wettability, electrical charge, rigidity, microroughness and especially nanoroughness. The latter has been shown to stimulate preferentially the growth of osteoblasts in comparison with other competitive cell types, such as fibroblasts, which could prevent fibrous tissue formation upon implantation. The second more specialized part of the review deals with materials suitable for bone contact and substitution, particularly novel polymer-based composites reinforced with fibres or inorganic particles and containing bioactive components, such as crystals of hydroxyapatite or other calcium phosphates, synthetic ligands for cell adhesion receptors or growth factors. Moreover, if they are degradable, they can be gradually replaced with a regenerating tissue. |
doi_str_mv | 10.33549/physiolres.931776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_748939800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111593931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-62f5e53b438378fcbb56b8cee6903a74a9457a5b74de8a79dc6d5468fc047c673</originalsourceid><addsrcrecordid>eNpdkD9PwzAUxC0EoqXwBRhQxMKU4sSO_4yoooBUqQvMke28FFeNHexk6LfHpZUqMb3hfne6dwjdF3hOSEXlc_-9j9bvAsS5JAXn7AJNC4HLXEpOLtEUC1bmgmIxQTcxbjEuOebkGk0KyUTBWDlFy3UcwG_AWZMZ2O1i5l2mrc-ti70N0GSdGiBYlZTWh0x7B9lgYxwhA7exDpLoNrfoqk0I3J3uDH0tXz8X7_lq_faxeFnlhnAy5KxsK6iIpkQQLlqjdcW0MABMYqI4VZJWXFWa0waE4rIxrKkoSySm3DBOZujpmNsH_zNCHOrOxkNv5cCPseZUSCIFxol8_Edu_RhcKpcgWqbv5SGuPEIm-BgDtHUfbKfCvi5w_bdxfd64Pm6cTA-n5FF30Jwtp1HJL2F3etE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744216697</pqid></control><display><type>article</type><title>Osteogenic cells on bio-inspired materials for bone tissue engineering</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Vagaská, B ; Bacáková, L ; Filová, E ; Balík, K</creator><creatorcontrib>Vagaská, B ; Bacáková, L ; Filová, E ; Balík, K</creatorcontrib><description>This article reviews the development of artificial bone substitutes from their older single-phase forms to novel multi-phase composites, mimicking the composition and architecture of natural bone tissue. The new generation of bone implants should be bioactive, i.e. they should induce the desired cellular responses, leading to integration of the material into the natural tissue and stimulating self-healing processes. Therefore, the first part of the review explains the common principles of the cell-material interaction and summarizes the strategies how to improve the biocompatibility and bioactivity of the materials by modifying the physico-chemical properties of the material surface, such as surface chemistry, wettability, electrical charge, rigidity, microroughness and especially nanoroughness. The latter has been shown to stimulate preferentially the growth of osteoblasts in comparison with other competitive cell types, such as fibroblasts, which could prevent fibrous tissue formation upon implantation. The second more specialized part of the review deals with materials suitable for bone contact and substitution, particularly novel polymer-based composites reinforced with fibres or inorganic particles and containing bioactive components, such as crystals of hydroxyapatite or other calcium phosphates, synthetic ligands for cell adhesion receptors or growth factors. Moreover, if they are degradable, they can be gradually replaced with a regenerating tissue.</description><identifier>ISSN: 0862-8408</identifier><identifier>EISSN: 1802-9973</identifier><identifier>DOI: 10.33549/physiolres.931776</identifier><identifier>PMID: 19681662</identifier><language>eng</language><publisher>Czech Republic: Institute of Physiology</publisher><subject>Animals ; Architectural engineering ; Biocompatibility ; Biocompatible Materials ; Biomedical materials ; Bone Substitutes - chemistry ; Bone Substitutes - therapeutic use ; Bone Transplantation - instrumentation ; Composite materials ; Contact angle ; Gene expression ; Humans ; Mechanical properties ; Osseointegration ; Osteoblasts - physiology ; Osteogenesis ; Prosthesis Design ; Proteins ; Surface Properties ; Tissue Engineering</subject><ispartof>Physiological research, 2010-01, Vol.59 (3), p.309-322</ispartof><rights>Copyright Institute of Physiology 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-62f5e53b438378fcbb56b8cee6903a74a9457a5b74de8a79dc6d5468fc047c673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27913,27914</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19681662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vagaská, B</creatorcontrib><creatorcontrib>Bacáková, L</creatorcontrib><creatorcontrib>Filová, E</creatorcontrib><creatorcontrib>Balík, K</creatorcontrib><title>Osteogenic cells on bio-inspired materials for bone tissue engineering</title><title>Physiological research</title><addtitle>Physiol Res</addtitle><description>This article reviews the development of artificial bone substitutes from their older single-phase forms to novel multi-phase composites, mimicking the composition and architecture of natural bone tissue. The new generation of bone implants should be bioactive, i.e. they should induce the desired cellular responses, leading to integration of the material into the natural tissue and stimulating self-healing processes. Therefore, the first part of the review explains the common principles of the cell-material interaction and summarizes the strategies how to improve the biocompatibility and bioactivity of the materials by modifying the physico-chemical properties of the material surface, such as surface chemistry, wettability, electrical charge, rigidity, microroughness and especially nanoroughness. The latter has been shown to stimulate preferentially the growth of osteoblasts in comparison with other competitive cell types, such as fibroblasts, which could prevent fibrous tissue formation upon implantation. The second more specialized part of the review deals with materials suitable for bone contact and substitution, particularly novel polymer-based composites reinforced with fibres or inorganic particles and containing bioactive components, such as crystals of hydroxyapatite or other calcium phosphates, synthetic ligands for cell adhesion receptors or growth factors. Moreover, if they are degradable, they can be gradually replaced with a regenerating tissue.</description><subject>Animals</subject><subject>Architectural engineering</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials</subject><subject>Biomedical materials</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - therapeutic use</subject><subject>Bone Transplantation - instrumentation</subject><subject>Composite materials</subject><subject>Contact angle</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Osseointegration</subject><subject>Osteoblasts - physiology</subject><subject>Osteogenesis</subject><subject>Prosthesis Design</subject><subject>Proteins</subject><subject>Surface Properties</subject><subject>Tissue Engineering</subject><issn>0862-8408</issn><issn>1802-9973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkD9PwzAUxC0EoqXwBRhQxMKU4sSO_4yoooBUqQvMke28FFeNHexk6LfHpZUqMb3hfne6dwjdF3hOSEXlc_-9j9bvAsS5JAXn7AJNC4HLXEpOLtEUC1bmgmIxQTcxbjEuOebkGk0KyUTBWDlFy3UcwG_AWZMZ2O1i5l2mrc-ti70N0GSdGiBYlZTWh0x7B9lgYxwhA7exDpLoNrfoqk0I3J3uDH0tXz8X7_lq_faxeFnlhnAy5KxsK6iIpkQQLlqjdcW0MABMYqI4VZJWXFWa0waE4rIxrKkoSySm3DBOZujpmNsH_zNCHOrOxkNv5cCPseZUSCIFxol8_Edu_RhcKpcgWqbv5SGuPEIm-BgDtHUfbKfCvi5w_bdxfd64Pm6cTA-n5FF30Jwtp1HJL2F3etE</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Vagaská, B</creator><creator>Bacáková, L</creator><creator>Filová, E</creator><creator>Balík, K</creator><general>Institute of Physiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20100101</creationdate><title>Osteogenic cells on bio-inspired materials for bone tissue engineering</title><author>Vagaská, B ; Bacáková, L ; Filová, E ; Balík, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-62f5e53b438378fcbb56b8cee6903a74a9457a5b74de8a79dc6d5468fc047c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Architectural engineering</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials</topic><topic>Biomedical materials</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - therapeutic use</topic><topic>Bone Transplantation - instrumentation</topic><topic>Composite materials</topic><topic>Contact angle</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Osseointegration</topic><topic>Osteoblasts - physiology</topic><topic>Osteogenesis</topic><topic>Prosthesis Design</topic><topic>Proteins</topic><topic>Surface Properties</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vagaská, B</creatorcontrib><creatorcontrib>Bacáková, L</creatorcontrib><creatorcontrib>Filová, E</creatorcontrib><creatorcontrib>Balík, K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Physiological research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vagaská, B</au><au>Bacáková, L</au><au>Filová, E</au><au>Balík, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteogenic cells on bio-inspired materials for bone tissue engineering</atitle><jtitle>Physiological research</jtitle><addtitle>Physiol Res</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>59</volume><issue>3</issue><spage>309</spage><epage>322</epage><pages>309-322</pages><issn>0862-8408</issn><eissn>1802-9973</eissn><abstract>This article reviews the development of artificial bone substitutes from their older single-phase forms to novel multi-phase composites, mimicking the composition and architecture of natural bone tissue. The new generation of bone implants should be bioactive, i.e. they should induce the desired cellular responses, leading to integration of the material into the natural tissue and stimulating self-healing processes. Therefore, the first part of the review explains the common principles of the cell-material interaction and summarizes the strategies how to improve the biocompatibility and bioactivity of the materials by modifying the physico-chemical properties of the material surface, such as surface chemistry, wettability, electrical charge, rigidity, microroughness and especially nanoroughness. The latter has been shown to stimulate preferentially the growth of osteoblasts in comparison with other competitive cell types, such as fibroblasts, which could prevent fibrous tissue formation upon implantation. The second more specialized part of the review deals with materials suitable for bone contact and substitution, particularly novel polymer-based composites reinforced with fibres or inorganic particles and containing bioactive components, such as crystals of hydroxyapatite or other calcium phosphates, synthetic ligands for cell adhesion receptors or growth factors. Moreover, if they are degradable, they can be gradually replaced with a regenerating tissue.</abstract><cop>Czech Republic</cop><pub>Institute of Physiology</pub><pmid>19681662</pmid><doi>10.33549/physiolres.931776</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0862-8408 |
ispartof | Physiological research, 2010-01, Vol.59 (3), p.309-322 |
issn | 0862-8408 1802-9973 |
language | eng |
recordid | cdi_proquest_miscellaneous_748939800 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Architectural engineering Biocompatibility Biocompatible Materials Biomedical materials Bone Substitutes - chemistry Bone Substitutes - therapeutic use Bone Transplantation - instrumentation Composite materials Contact angle Gene expression Humans Mechanical properties Osseointegration Osteoblasts - physiology Osteogenesis Prosthesis Design Proteins Surface Properties Tissue Engineering |
title | Osteogenic cells on bio-inspired materials for bone tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteogenic%20cells%20on%20bio-inspired%20materials%20for%20bone%20tissue%20engineering&rft.jtitle=Physiological%20research&rft.au=Vagask%C3%A1,%20B&rft.date=2010-01-01&rft.volume=59&rft.issue=3&rft.spage=309&rft.epage=322&rft.pages=309-322&rft.issn=0862-8408&rft.eissn=1802-9973&rft_id=info:doi/10.33549/physiolres.931776&rft_dat=%3Cproquest_cross%3E2111593931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744216697&rft_id=info:pmid/19681662&rfr_iscdi=true |