Targeting and membrane insertion into the endoplasmic reticulum membrane of Saccharomyces cerevisiae essential protein Rot1

Rot1 is an essential yeast protein that has been related to cell wall biosynthesis, actin cytoskeleton dynamics and protein folding. Rot1 is an N-glycosylated protein anchored to the nuclear envelope-endoplasmic reticulum (ER) membrane by a transmembrane domain at its C-terminal end. Rot1 is translo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS yeast research 2010-09, Vol.10 (6), p.639-647
Hauptverfasser: Juanes, María Angeles, Martínez-Garay, Carlos Andrés, Igual, Juan Carlos, Bañó, María Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rot1 is an essential yeast protein that has been related to cell wall biosynthesis, actin cytoskeleton dynamics and protein folding. Rot1 is an N-glycosylated protein anchored to the nuclear envelope-endoplasmic reticulum (ER) membrane by a transmembrane domain at its C-terminal end. Rot1 is translocated to the ER by a post-translational mechanism. Here, we investigate the protein domain required to target and translocate Rot1 to the ER membrane. We found that several deletions of the N-terminal region of Rot1 prevented neither membrane targeting nor the insertion of this protein. Interestingly, we obtained the same results when different truncated forms in the C-terminal transmembrane domain were analyzed, suggesting the presence of an internal topogenic element that is capable of translocating Rot1 to the ER. To identify this sequence, we generated a combination of N- and C-terminal deletion mutants of Rot1 and we investigated their insertion into the membrane. The results show that two regions, amino acids 26-60 and 200-228, are involved in the post-translational translocation of Rot1 across the ER membrane.
ISSN:1567-1356
1567-1364
DOI:10.1111/j.1567-1364.2010.00653.x