Aberrant expression and methylation status of putatively imprinted genes in placenta of cloned piglets

Unlike embryos derived from fertilization, most cloned embryos die during postimplantation development, and those that survive to term are frequently defective. Many of the observed defects involve placenta. Abnormal placentation has been described in several cloned species. Imprinted genes are impo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular reprogramming 2010-04, Vol.12 (2), p.213-222
Hauptverfasser: Wei, Yanchang, Zhu, Jiang, Huan, Yanjun, Liu, Zhongfeng, Yang, Cairong, Zhang, Xinmiao, Mu, Yanshuang, Xia, Ping, Liu, Zhouhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unlike embryos derived from fertilization, most cloned embryos die during postimplantation development, and those that survive to term are frequently defective. Many of the observed defects involve placenta. Abnormal placentation has been described in several cloned species. Imprinted genes are important regulators of placenta growth, and may be subjected to faulty reprogramming during somatic cell nuclear transfer. We aimed to determine the expression levels and methylation patterns of imprinted genes in placentas of live cloned piglets and dead ones. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that the expression of all four imprinted genes (IGF2, H19, PEG3, and GRB10) was significantly reduced in placentas of dead clones compared with placentas of live cloned piglets and controls (p < 0.05). In contrast, both live and dead cloned piglets exhibited steady-state mRNA levels for these genes within the control range (p > 0.05). Transcript levels for these genes in live clones rarely differed from those of controls in both piglets and placentas. Examination of the methylation status of DMR2 of IGF2 and CTCF3 of H19 genes revealed that both genes exhibited significant high methylation levels in placentas of dead clones compared with placentas of live clones and controls. In contrast, both genes showed a normal differential methylation pattern in live cloned piglets and their placentas compared with controls. Importantly, dead cloned piglets also showed a normal pattern. Our results suggest that abnormal expression of imprinted genes in placenta may contribute to the development failure in pig somatic cell nuclear transfer (SCNT), which may be caused by abnormal methylation patterns in differentially methylated regions (DMRs) of imprinted genes as a result of incomplete reprogramming during SCNT.
ISSN:2152-4971
2152-4998
DOI:10.1089/cell.2009.0090