The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization

Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2010-05, Vol.51 (1), p.112-122
Hauptverfasser: Vinck, Martin, van Wingerden, Marijn, Womelsdorf, Thilo, Fries, Pascal, Pennartz, Cyriel M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue 1
container_start_page 112
container_title NeuroImage (Orlando, Fla.)
container_volume 51
creator Vinck, Martin
van Wingerden, Marijn
Womelsdorf, Thilo
Fries, Pascal
Pennartz, Cyriel M.A.
description Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal synchronization. This consistency is conventionally measured by the PLV (phase-locking value) or the spectral coherence measure. Both statistical measures suffer from significant bias, in that their sample estimates overestimate the population statistics for finite sample sizes. This is a significant problem in the neurosciences where statistical comparisons are often made between conditions with a different number of trials or between neurons with a different number of spikes. We introduce a new circular statistic, the PPC (pairwise phase consistency). We demonstrate that the sample estimate of the PPC is a bias-free and consistent estimator of its corresponding population parameter. We show, both analytically and by means of numerical simulations, that the population statistic of the PPC is equivalent to the population statistic of the squared PLV. The variance and mean squared error of the PPC and PLV are compared. Finally, we demonstrate the practical relevance of the method in actual neuronal data recorded from the orbitofrontal cortex of rats that engage in a two-odour discrimination task. We find a strong increase in rhythmic synchronization of spikes relative to the local field potential (as measured by the PPC) for a wide range of low frequencies (including the theta-band) during the anticipation of sucrose delivery in comparison to the anticipation of quinine delivery.
doi_str_mv 10.1016/j.neuroimage.2010.01.073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746304053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811910000959</els_id><sourcerecordid>746304053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-4fed5a38cd2c7d673bf39fc0a70bc86d5440d2bf7c6358802614570e24bc51823</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa0KVOi2XwFZ4sAp23Fsx3FvgOgfCYkLSNwsx5k0Xm3irZ2Alk9fb5eCxIWLPbJ_b8Z-jxDKYMmAVV9XyxHnGPxgf-OyhHwMbAmKfyDHDLQstFTlwa6WvKgZ00fkU0orANBM1B_JUZYwAao6Jve3PdKN9fHRp1z0Nq8ujMmnCUe3_UbPaeNtKrqISAe0aY5IQ0djv536wTv67yGjXdO0HV2fS_9kJx_Gz-Sws-uEX573Bbn7fnV7-bO4vvnx6_L8unBC66kQHbbS8tq1pVNtpXjTcd05sAoaV1etFALasumUq7isaygrJqQCLEXjJKtLviBn-76bGP7MmCYz-ORwvbYjhjkZJSoOIhvxPsl5JQTPNi7I6RtyFeaYP5kMk_leCg06U_WecjGkFLEzm5gTiVvDwOxiMivzGpPZxWSAmazP0pPnAXMzYPsi_J9LBi72AGbrHjxGk5zPgWDrI7rJtMG_P-Uvggyoeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507354909</pqid></control><display><type>article</type><title>The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Vinck, Martin ; van Wingerden, Marijn ; Womelsdorf, Thilo ; Fries, Pascal ; Pennartz, Cyriel M.A.</creator><creatorcontrib>Vinck, Martin ; van Wingerden, Marijn ; Womelsdorf, Thilo ; Fries, Pascal ; Pennartz, Cyriel M.A.</creatorcontrib><description>Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal synchronization. This consistency is conventionally measured by the PLV (phase-locking value) or the spectral coherence measure. Both statistical measures suffer from significant bias, in that their sample estimates overestimate the population statistics for finite sample sizes. This is a significant problem in the neurosciences where statistical comparisons are often made between conditions with a different number of trials or between neurons with a different number of spikes. We introduce a new circular statistic, the PPC (pairwise phase consistency). We demonstrate that the sample estimate of the PPC is a bias-free and consistent estimator of its corresponding population parameter. We show, both analytically and by means of numerical simulations, that the population statistic of the PPC is equivalent to the population statistic of the squared PLV. The variance and mean squared error of the PPC and PLV are compared. Finally, we demonstrate the practical relevance of the method in actual neuronal data recorded from the orbitofrontal cortex of rats that engage in a two-odour discrimination task. We find a strong increase in rhythmic synchronization of spikes relative to the local field potential (as measured by the PPC) for a wide range of low frequencies (including the theta-band) during the anticipation of sucrose delivery in comparison to the anticipation of quinine delivery.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2010.01.073</identifier><identifier>PMID: 20114076</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials ; Algorithms ; Animals ; Bands ; Bias ; Coherence ; Colleges &amp; universities ; Computer Simulation ; Discrimination (Psychology) - physiology ; Electroencephalography ; Expected values ; Frontal Lobe - physiology ; Male ; Mental Processes - physiology ; Neurons - physiology ; Neurosciences ; Olfactory Perception - physiology ; Oscillation ; Pairwise phase consistency ; Periodicity ; Phase-locking ; Random variables ; Rats ; Rats, Wistar ; Reward ; Rhythmic ; Signal Processing, Computer-Assisted ; Synchronization ; Wavelet transforms</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-05, Vol.51 (1), p.112-122</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright (c) 2010 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 15, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-4fed5a38cd2c7d673bf39fc0a70bc86d5440d2bf7c6358802614570e24bc51823</citedby><cites>FETCH-LOGICAL-c499t-4fed5a38cd2c7d673bf39fc0a70bc86d5440d2bf7c6358802614570e24bc51823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811910000959$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20114076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinck, Martin</creatorcontrib><creatorcontrib>van Wingerden, Marijn</creatorcontrib><creatorcontrib>Womelsdorf, Thilo</creatorcontrib><creatorcontrib>Fries, Pascal</creatorcontrib><creatorcontrib>Pennartz, Cyriel M.A.</creatorcontrib><title>The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal synchronization. This consistency is conventionally measured by the PLV (phase-locking value) or the spectral coherence measure. Both statistical measures suffer from significant bias, in that their sample estimates overestimate the population statistics for finite sample sizes. This is a significant problem in the neurosciences where statistical comparisons are often made between conditions with a different number of trials or between neurons with a different number of spikes. We introduce a new circular statistic, the PPC (pairwise phase consistency). We demonstrate that the sample estimate of the PPC is a bias-free and consistent estimator of its corresponding population parameter. We show, both analytically and by means of numerical simulations, that the population statistic of the PPC is equivalent to the population statistic of the squared PLV. The variance and mean squared error of the PPC and PLV are compared. Finally, we demonstrate the practical relevance of the method in actual neuronal data recorded from the orbitofrontal cortex of rats that engage in a two-odour discrimination task. We find a strong increase in rhythmic synchronization of spikes relative to the local field potential (as measured by the PPC) for a wide range of low frequencies (including the theta-band) during the anticipation of sucrose delivery in comparison to the anticipation of quinine delivery.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bands</subject><subject>Bias</subject><subject>Coherence</subject><subject>Colleges &amp; universities</subject><subject>Computer Simulation</subject><subject>Discrimination (Psychology) - physiology</subject><subject>Electroencephalography</subject><subject>Expected values</subject><subject>Frontal Lobe - physiology</subject><subject>Male</subject><subject>Mental Processes - physiology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Olfactory Perception - physiology</subject><subject>Oscillation</subject><subject>Pairwise phase consistency</subject><subject>Periodicity</subject><subject>Phase-locking</subject><subject>Random variables</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reward</subject><subject>Rhythmic</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Synchronization</subject><subject>Wavelet transforms</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU9P3DAQxa0KVOi2XwFZ4sAp23Fsx3FvgOgfCYkLSNwsx5k0Xm3irZ2Alk9fb5eCxIWLPbJ_b8Z-jxDKYMmAVV9XyxHnGPxgf-OyhHwMbAmKfyDHDLQstFTlwa6WvKgZ00fkU0orANBM1B_JUZYwAao6Jve3PdKN9fHRp1z0Nq8ujMmnCUe3_UbPaeNtKrqISAe0aY5IQ0djv536wTv67yGjXdO0HV2fS_9kJx_Gz-Sws-uEX573Bbn7fnV7-bO4vvnx6_L8unBC66kQHbbS8tq1pVNtpXjTcd05sAoaV1etFALasumUq7isaygrJqQCLEXjJKtLviBn-76bGP7MmCYz-ORwvbYjhjkZJSoOIhvxPsl5JQTPNi7I6RtyFeaYP5kMk_leCg06U_WecjGkFLEzm5gTiVvDwOxiMivzGpPZxWSAmazP0pPnAXMzYPsi_J9LBi72AGbrHjxGk5zPgWDrI7rJtMG_P-Uvggyoeg</recordid><startdate>20100515</startdate><enddate>20100515</enddate><creator>Vinck, Martin</creator><creator>van Wingerden, Marijn</creator><creator>Womelsdorf, Thilo</creator><creator>Fries, Pascal</creator><creator>Pennartz, Cyriel M.A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20100515</creationdate><title>The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization</title><author>Vinck, Martin ; van Wingerden, Marijn ; Womelsdorf, Thilo ; Fries, Pascal ; Pennartz, Cyriel M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-4fed5a38cd2c7d673bf39fc0a70bc86d5440d2bf7c6358802614570e24bc51823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bands</topic><topic>Bias</topic><topic>Coherence</topic><topic>Colleges &amp; universities</topic><topic>Computer Simulation</topic><topic>Discrimination (Psychology) - physiology</topic><topic>Electroencephalography</topic><topic>Expected values</topic><topic>Frontal Lobe - physiology</topic><topic>Male</topic><topic>Mental Processes - physiology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Olfactory Perception - physiology</topic><topic>Oscillation</topic><topic>Pairwise phase consistency</topic><topic>Periodicity</topic><topic>Phase-locking</topic><topic>Random variables</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reward</topic><topic>Rhythmic</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Synchronization</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinck, Martin</creatorcontrib><creatorcontrib>van Wingerden, Marijn</creatorcontrib><creatorcontrib>Womelsdorf, Thilo</creatorcontrib><creatorcontrib>Fries, Pascal</creatorcontrib><creatorcontrib>Pennartz, Cyriel M.A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinck, Martin</au><au>van Wingerden, Marijn</au><au>Womelsdorf, Thilo</au><au>Fries, Pascal</au><au>Pennartz, Cyriel M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-05-15</date><risdate>2010</risdate><volume>51</volume><issue>1</issue><spage>112</spage><epage>122</epage><pages>112-122</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal synchronization. This consistency is conventionally measured by the PLV (phase-locking value) or the spectral coherence measure. Both statistical measures suffer from significant bias, in that their sample estimates overestimate the population statistics for finite sample sizes. This is a significant problem in the neurosciences where statistical comparisons are often made between conditions with a different number of trials or between neurons with a different number of spikes. We introduce a new circular statistic, the PPC (pairwise phase consistency). We demonstrate that the sample estimate of the PPC is a bias-free and consistent estimator of its corresponding population parameter. We show, both analytically and by means of numerical simulations, that the population statistic of the PPC is equivalent to the population statistic of the squared PLV. The variance and mean squared error of the PPC and PLV are compared. Finally, we demonstrate the practical relevance of the method in actual neuronal data recorded from the orbitofrontal cortex of rats that engage in a two-odour discrimination task. We find a strong increase in rhythmic synchronization of spikes relative to the local field potential (as measured by the PPC) for a wide range of low frequencies (including the theta-band) during the anticipation of sucrose delivery in comparison to the anticipation of quinine delivery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20114076</pmid><doi>10.1016/j.neuroimage.2010.01.073</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2010-05, Vol.51 (1), p.112-122
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_746304053
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action Potentials
Algorithms
Animals
Bands
Bias
Coherence
Colleges & universities
Computer Simulation
Discrimination (Psychology) - physiology
Electroencephalography
Expected values
Frontal Lobe - physiology
Male
Mental Processes - physiology
Neurons - physiology
Neurosciences
Olfactory Perception - physiology
Oscillation
Pairwise phase consistency
Periodicity
Phase-locking
Random variables
Rats
Rats, Wistar
Reward
Rhythmic
Signal Processing, Computer-Assisted
Synchronization
Wavelet transforms
title The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pairwise%20phase%20consistency:%20A%20bias-free%20measure%20of%20rhythmic%20neuronal%20synchronization&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Vinck,%20Martin&rft.date=2010-05-15&rft.volume=51&rft.issue=1&rft.spage=112&rft.epage=122&rft.pages=112-122&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2010.01.073&rft_dat=%3Cproquest_cross%3E746304053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507354909&rft_id=info:pmid/20114076&rft_els_id=S1053811910000959&rfr_iscdi=true