The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization
Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal syn...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2010-05, Vol.51 (1), p.112-122 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | 1 |
container_start_page | 112 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 51 |
creator | Vinck, Martin van Wingerden, Marijn Womelsdorf, Thilo Fries, Pascal Pennartz, Cyriel M.A. |
description | Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal synchronization. This consistency is conventionally measured by the PLV (phase-locking value) or the spectral coherence measure. Both statistical measures suffer from significant bias, in that their sample estimates overestimate the population statistics for finite sample sizes. This is a significant problem in the neurosciences where statistical comparisons are often made between conditions with a different number of trials or between neurons with a different number of spikes. We introduce a new circular statistic, the PPC (pairwise phase consistency). We demonstrate that the sample estimate of the PPC is a bias-free and consistent estimator of its corresponding population parameter. We show, both analytically and by means of numerical simulations, that the population statistic of the PPC is equivalent to the population statistic of the squared PLV. The variance and mean squared error of the PPC and PLV are compared. Finally, we demonstrate the practical relevance of the method in actual neuronal data recorded from the orbitofrontal cortex of rats that engage in a two-odour discrimination task. We find a strong increase in rhythmic synchronization of spikes relative to the local field potential (as measured by the PPC) for a wide range of low frequencies (including the theta-band) during the anticipation of sucrose delivery in comparison to the anticipation of quinine delivery. |
doi_str_mv | 10.1016/j.neuroimage.2010.01.073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746304053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811910000959</els_id><sourcerecordid>746304053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-4fed5a38cd2c7d673bf39fc0a70bc86d5440d2bf7c6358802614570e24bc51823</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa0KVOi2XwFZ4sAp23Fsx3FvgOgfCYkLSNwsx5k0Xm3irZ2Alk9fb5eCxIWLPbJ_b8Z-jxDKYMmAVV9XyxHnGPxgf-OyhHwMbAmKfyDHDLQstFTlwa6WvKgZ00fkU0orANBM1B_JUZYwAao6Jve3PdKN9fHRp1z0Nq8ujMmnCUe3_UbPaeNtKrqISAe0aY5IQ0djv536wTv67yGjXdO0HV2fS_9kJx_Gz-Sws-uEX573Bbn7fnV7-bO4vvnx6_L8unBC66kQHbbS8tq1pVNtpXjTcd05sAoaV1etFALasumUq7isaygrJqQCLEXjJKtLviBn-76bGP7MmCYz-ORwvbYjhjkZJSoOIhvxPsl5JQTPNi7I6RtyFeaYP5kMk_leCg06U_WecjGkFLEzm5gTiVvDwOxiMivzGpPZxWSAmazP0pPnAXMzYPsi_J9LBi72AGbrHjxGk5zPgWDrI7rJtMG_P-Uvggyoeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507354909</pqid></control><display><type>article</type><title>The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Vinck, Martin ; van Wingerden, Marijn ; Womelsdorf, Thilo ; Fries, Pascal ; Pennartz, Cyriel M.A.</creator><creatorcontrib>Vinck, Martin ; van Wingerden, Marijn ; Womelsdorf, Thilo ; Fries, Pascal ; Pennartz, Cyriel M.A.</creatorcontrib><description>Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal synchronization. This consistency is conventionally measured by the PLV (phase-locking value) or the spectral coherence measure. Both statistical measures suffer from significant bias, in that their sample estimates overestimate the population statistics for finite sample sizes. This is a significant problem in the neurosciences where statistical comparisons are often made between conditions with a different number of trials or between neurons with a different number of spikes. We introduce a new circular statistic, the PPC (pairwise phase consistency). We demonstrate that the sample estimate of the PPC is a bias-free and consistent estimator of its corresponding population parameter. We show, both analytically and by means of numerical simulations, that the population statistic of the PPC is equivalent to the population statistic of the squared PLV. The variance and mean squared error of the PPC and PLV are compared. Finally, we demonstrate the practical relevance of the method in actual neuronal data recorded from the orbitofrontal cortex of rats that engage in a two-odour discrimination task. We find a strong increase in rhythmic synchronization of spikes relative to the local field potential (as measured by the PPC) for a wide range of low frequencies (including the theta-band) during the anticipation of sucrose delivery in comparison to the anticipation of quinine delivery.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2010.01.073</identifier><identifier>PMID: 20114076</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials ; Algorithms ; Animals ; Bands ; Bias ; Coherence ; Colleges & universities ; Computer Simulation ; Discrimination (Psychology) - physiology ; Electroencephalography ; Expected values ; Frontal Lobe - physiology ; Male ; Mental Processes - physiology ; Neurons - physiology ; Neurosciences ; Olfactory Perception - physiology ; Oscillation ; Pairwise phase consistency ; Periodicity ; Phase-locking ; Random variables ; Rats ; Rats, Wistar ; Reward ; Rhythmic ; Signal Processing, Computer-Assisted ; Synchronization ; Wavelet transforms</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-05, Vol.51 (1), p.112-122</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright (c) 2010 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 15, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-4fed5a38cd2c7d673bf39fc0a70bc86d5440d2bf7c6358802614570e24bc51823</citedby><cites>FETCH-LOGICAL-c499t-4fed5a38cd2c7d673bf39fc0a70bc86d5440d2bf7c6358802614570e24bc51823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811910000959$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20114076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinck, Martin</creatorcontrib><creatorcontrib>van Wingerden, Marijn</creatorcontrib><creatorcontrib>Womelsdorf, Thilo</creatorcontrib><creatorcontrib>Fries, Pascal</creatorcontrib><creatorcontrib>Pennartz, Cyriel M.A.</creatorcontrib><title>The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal synchronization. This consistency is conventionally measured by the PLV (phase-locking value) or the spectral coherence measure. Both statistical measures suffer from significant bias, in that their sample estimates overestimate the population statistics for finite sample sizes. This is a significant problem in the neurosciences where statistical comparisons are often made between conditions with a different number of trials or between neurons with a different number of spikes. We introduce a new circular statistic, the PPC (pairwise phase consistency). We demonstrate that the sample estimate of the PPC is a bias-free and consistent estimator of its corresponding population parameter. We show, both analytically and by means of numerical simulations, that the population statistic of the PPC is equivalent to the population statistic of the squared PLV. The variance and mean squared error of the PPC and PLV are compared. Finally, we demonstrate the practical relevance of the method in actual neuronal data recorded from the orbitofrontal cortex of rats that engage in a two-odour discrimination task. We find a strong increase in rhythmic synchronization of spikes relative to the local field potential (as measured by the PPC) for a wide range of low frequencies (including the theta-band) during the anticipation of sucrose delivery in comparison to the anticipation of quinine delivery.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bands</subject><subject>Bias</subject><subject>Coherence</subject><subject>Colleges & universities</subject><subject>Computer Simulation</subject><subject>Discrimination (Psychology) - physiology</subject><subject>Electroencephalography</subject><subject>Expected values</subject><subject>Frontal Lobe - physiology</subject><subject>Male</subject><subject>Mental Processes - physiology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Olfactory Perception - physiology</subject><subject>Oscillation</subject><subject>Pairwise phase consistency</subject><subject>Periodicity</subject><subject>Phase-locking</subject><subject>Random variables</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reward</subject><subject>Rhythmic</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Synchronization</subject><subject>Wavelet transforms</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU9P3DAQxa0KVOi2XwFZ4sAp23Fsx3FvgOgfCYkLSNwsx5k0Xm3irZ2Alk9fb5eCxIWLPbJ_b8Z-jxDKYMmAVV9XyxHnGPxgf-OyhHwMbAmKfyDHDLQstFTlwa6WvKgZ00fkU0orANBM1B_JUZYwAao6Jve3PdKN9fHRp1z0Nq8ujMmnCUe3_UbPaeNtKrqISAe0aY5IQ0djv536wTv67yGjXdO0HV2fS_9kJx_Gz-Sws-uEX573Bbn7fnV7-bO4vvnx6_L8unBC66kQHbbS8tq1pVNtpXjTcd05sAoaV1etFALasumUq7isaygrJqQCLEXjJKtLviBn-76bGP7MmCYz-ORwvbYjhjkZJSoOIhvxPsl5JQTPNi7I6RtyFeaYP5kMk_leCg06U_WecjGkFLEzm5gTiVvDwOxiMivzGpPZxWSAmazP0pPnAXMzYPsi_J9LBi72AGbrHjxGk5zPgWDrI7rJtMG_P-Uvggyoeg</recordid><startdate>20100515</startdate><enddate>20100515</enddate><creator>Vinck, Martin</creator><creator>van Wingerden, Marijn</creator><creator>Womelsdorf, Thilo</creator><creator>Fries, Pascal</creator><creator>Pennartz, Cyriel M.A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20100515</creationdate><title>The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization</title><author>Vinck, Martin ; van Wingerden, Marijn ; Womelsdorf, Thilo ; Fries, Pascal ; Pennartz, Cyriel M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-4fed5a38cd2c7d673bf39fc0a70bc86d5440d2bf7c6358802614570e24bc51823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bands</topic><topic>Bias</topic><topic>Coherence</topic><topic>Colleges & universities</topic><topic>Computer Simulation</topic><topic>Discrimination (Psychology) - physiology</topic><topic>Electroencephalography</topic><topic>Expected values</topic><topic>Frontal Lobe - physiology</topic><topic>Male</topic><topic>Mental Processes - physiology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Olfactory Perception - physiology</topic><topic>Oscillation</topic><topic>Pairwise phase consistency</topic><topic>Periodicity</topic><topic>Phase-locking</topic><topic>Random variables</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reward</topic><topic>Rhythmic</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Synchronization</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinck, Martin</creatorcontrib><creatorcontrib>van Wingerden, Marijn</creatorcontrib><creatorcontrib>Womelsdorf, Thilo</creatorcontrib><creatorcontrib>Fries, Pascal</creatorcontrib><creatorcontrib>Pennartz, Cyriel M.A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinck, Martin</au><au>van Wingerden, Marijn</au><au>Womelsdorf, Thilo</au><au>Fries, Pascal</au><au>Pennartz, Cyriel M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-05-15</date><risdate>2010</risdate><volume>51</volume><issue>1</issue><spage>112</spage><epage>122</epage><pages>112-122</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal synchronization. This consistency is conventionally measured by the PLV (phase-locking value) or the spectral coherence measure. Both statistical measures suffer from significant bias, in that their sample estimates overestimate the population statistics for finite sample sizes. This is a significant problem in the neurosciences where statistical comparisons are often made between conditions with a different number of trials or between neurons with a different number of spikes. We introduce a new circular statistic, the PPC (pairwise phase consistency). We demonstrate that the sample estimate of the PPC is a bias-free and consistent estimator of its corresponding population parameter. We show, both analytically and by means of numerical simulations, that the population statistic of the PPC is equivalent to the population statistic of the squared PLV. The variance and mean squared error of the PPC and PLV are compared. Finally, we demonstrate the practical relevance of the method in actual neuronal data recorded from the orbitofrontal cortex of rats that engage in a two-odour discrimination task. We find a strong increase in rhythmic synchronization of spikes relative to the local field potential (as measured by the PPC) for a wide range of low frequencies (including the theta-band) during the anticipation of sucrose delivery in comparison to the anticipation of quinine delivery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20114076</pmid><doi>10.1016/j.neuroimage.2010.01.073</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2010-05, Vol.51 (1), p.112-122 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_746304053 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action Potentials Algorithms Animals Bands Bias Coherence Colleges & universities Computer Simulation Discrimination (Psychology) - physiology Electroencephalography Expected values Frontal Lobe - physiology Male Mental Processes - physiology Neurons - physiology Neurosciences Olfactory Perception - physiology Oscillation Pairwise phase consistency Periodicity Phase-locking Random variables Rats Rats, Wistar Reward Rhythmic Signal Processing, Computer-Assisted Synchronization Wavelet transforms |
title | The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pairwise%20phase%20consistency:%20A%20bias-free%20measure%20of%20rhythmic%20neuronal%20synchronization&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Vinck,%20Martin&rft.date=2010-05-15&rft.volume=51&rft.issue=1&rft.spage=112&rft.epage=122&rft.pages=112-122&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2010.01.073&rft_dat=%3Cproquest_cross%3E746304053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507354909&rft_id=info:pmid/20114076&rft_els_id=S1053811910000959&rfr_iscdi=true |