Dynamic multi-compartmental modelling of metal bioaccumulation in fish: Identifiability implications

Metal bioaccumulation in fish is influenced by factors specific to the chemical and environmental conditions, the exposure route and the species. For a better understanding of the main interactions among these factors, models are needed to capture the basic principles driving the dynamics of metal b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news 2010-03, Vol.25 (3), p.344-353
Hauptverfasser: Otero-Muras, I., Franco-Uría, A., Alonso, A.A., Balsa-Canto, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue 3
container_start_page 344
container_title Environmental modelling & software : with environment data news
container_volume 25
creator Otero-Muras, I.
Franco-Uría, A.
Alonso, A.A.
Balsa-Canto, E.
description Metal bioaccumulation in fish is influenced by factors specific to the chemical and environmental conditions, the exposure route and the species. For a better understanding of the main interactions among these factors, models are needed to capture the basic principles driving the dynamics of metal bioaccumulation in fish, taking into account different exposure routes and the distribution among representative organs. There is a significant amount of data in the literature concerning metal bioaccumulation experiments in different species of fish. Quantitative information about rate constants of the processes involved in bioaccumulation (diffusion, uptake and elimination) can be obtained from these data by means of dynamic models, that, once validated, can be used for predictive purposes. In this work, a compartmental model structure is developed aiming, in the first instance, to obtain the maximum amount of information from published experimental data. Once calibrated, the model can be further used to predict metal bioaccumulation under different scenarios. The model structure is able to reproduce the experimental behaviour for those species-metal pairs tested and, in addition, is demonstrated to be robust and identifiable. Then, the complete set of parameters can be estimated uniquely, for a specific species-metal pair by using concentration measures in a reduced number of organs. In this way, the optimal parameter sets obtained for different pairs can be compared, and the parameter specificity with respect to the metal or the species can be investigated.
doi_str_mv 10.1016/j.envsoft.2009.08.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746297043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815209002291</els_id><sourcerecordid>1777145525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-833a37b8222b11a6952b53c02cc23de3964796335b75dfb47e92b1dfc009591e3</originalsourceid><addsrcrecordid>eNqFkMtOwzAURLMAiVL4BCTvYJPgRxwnbBAqr0qV2MDacmwHbhXHJXYq9e9xadewmqurMyPNZNkVwQXBpLpdF3bYBt_FgmLcFLgukpxkM8KqMq8Jp2fZeQhrjHG6y1lmHneDcqCRm_oIufZuo8bo7BBVj5w3tu9h-ES-Q87uXy14pfWUaBXBDwgG1EH4ukNLkzzQgWqhh7hD4DY96F8oXGSnneqDvTzqPPt4fnpfvOart5fl4mGVaybKmNeMKSbamlLaEqKqhtOWM42p1pQZy5qqFE3FGG8FN11bCtsk0HQ6VeQNsWyeXR9yN6P_nmyI0kHQqYIarJ-CFGVFG4FLlsibP0kihCAl55QnlB9QPfoQRtvJzQhOjTtJsNxvLtfyuLncby5xLZMk3_3BZ1PjLdhRBg120NbAaHWUxsM_CT9o75DX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777145525</pqid></control><display><type>article</type><title>Dynamic multi-compartmental modelling of metal bioaccumulation in fish: Identifiability implications</title><source>Elsevier ScienceDirect Journals</source><creator>Otero-Muras, I. ; Franco-Uría, A. ; Alonso, A.A. ; Balsa-Canto, E.</creator><creatorcontrib>Otero-Muras, I. ; Franco-Uría, A. ; Alonso, A.A. ; Balsa-Canto, E.</creatorcontrib><description>Metal bioaccumulation in fish is influenced by factors specific to the chemical and environmental conditions, the exposure route and the species. For a better understanding of the main interactions among these factors, models are needed to capture the basic principles driving the dynamics of metal bioaccumulation in fish, taking into account different exposure routes and the distribution among representative organs. There is a significant amount of data in the literature concerning metal bioaccumulation experiments in different species of fish. Quantitative information about rate constants of the processes involved in bioaccumulation (diffusion, uptake and elimination) can be obtained from these data by means of dynamic models, that, once validated, can be used for predictive purposes. In this work, a compartmental model structure is developed aiming, in the first instance, to obtain the maximum amount of information from published experimental data. Once calibrated, the model can be further used to predict metal bioaccumulation under different scenarios. The model structure is able to reproduce the experimental behaviour for those species-metal pairs tested and, in addition, is demonstrated to be robust and identifiable. Then, the complete set of parameters can be estimated uniquely, for a specific species-metal pair by using concentration measures in a reduced number of organs. In this way, the optimal parameter sets obtained for different pairs can be compared, and the parameter specificity with respect to the metal or the species can be investigated.</description><identifier>ISSN: 1364-8152</identifier><identifier>DOI: 10.1016/j.envsoft.2009.08.009</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bioaccumulation ; Calibration ; Compartmental model ; Dynamic modelling ; Dynamics ; Fish ; Identifiability ; Mathematical models ; Metals ; Modelling ; Organs ; Parameter estimation ; Pharmacokinetics</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2010-03, Vol.25 (3), p.344-353</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-833a37b8222b11a6952b53c02cc23de3964796335b75dfb47e92b1dfc009591e3</citedby><cites>FETCH-LOGICAL-c374t-833a37b8222b11a6952b53c02cc23de3964796335b75dfb47e92b1dfc009591e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1364815209002291$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Otero-Muras, I.</creatorcontrib><creatorcontrib>Franco-Uría, A.</creatorcontrib><creatorcontrib>Alonso, A.A.</creatorcontrib><creatorcontrib>Balsa-Canto, E.</creatorcontrib><title>Dynamic multi-compartmental modelling of metal bioaccumulation in fish: Identifiability implications</title><title>Environmental modelling &amp; software : with environment data news</title><description>Metal bioaccumulation in fish is influenced by factors specific to the chemical and environmental conditions, the exposure route and the species. For a better understanding of the main interactions among these factors, models are needed to capture the basic principles driving the dynamics of metal bioaccumulation in fish, taking into account different exposure routes and the distribution among representative organs. There is a significant amount of data in the literature concerning metal bioaccumulation experiments in different species of fish. Quantitative information about rate constants of the processes involved in bioaccumulation (diffusion, uptake and elimination) can be obtained from these data by means of dynamic models, that, once validated, can be used for predictive purposes. In this work, a compartmental model structure is developed aiming, in the first instance, to obtain the maximum amount of information from published experimental data. Once calibrated, the model can be further used to predict metal bioaccumulation under different scenarios. The model structure is able to reproduce the experimental behaviour for those species-metal pairs tested and, in addition, is demonstrated to be robust and identifiable. Then, the complete set of parameters can be estimated uniquely, for a specific species-metal pair by using concentration measures in a reduced number of organs. In this way, the optimal parameter sets obtained for different pairs can be compared, and the parameter specificity with respect to the metal or the species can be investigated.</description><subject>Bioaccumulation</subject><subject>Calibration</subject><subject>Compartmental model</subject><subject>Dynamic modelling</subject><subject>Dynamics</subject><subject>Fish</subject><subject>Identifiability</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Modelling</subject><subject>Organs</subject><subject>Parameter estimation</subject><subject>Pharmacokinetics</subject><issn>1364-8152</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAURLMAiVL4BCTvYJPgRxwnbBAqr0qV2MDacmwHbhXHJXYq9e9xadewmqurMyPNZNkVwQXBpLpdF3bYBt_FgmLcFLgukpxkM8KqMq8Jp2fZeQhrjHG6y1lmHneDcqCRm_oIufZuo8bo7BBVj5w3tu9h-ES-Q87uXy14pfWUaBXBDwgG1EH4ukNLkzzQgWqhh7hD4DY96F8oXGSnneqDvTzqPPt4fnpfvOart5fl4mGVaybKmNeMKSbamlLaEqKqhtOWM42p1pQZy5qqFE3FGG8FN11bCtsk0HQ6VeQNsWyeXR9yN6P_nmyI0kHQqYIarJ-CFGVFG4FLlsibP0kihCAl55QnlB9QPfoQRtvJzQhOjTtJsNxvLtfyuLncby5xLZMk3_3BZ1PjLdhRBg120NbAaHWUxsM_CT9o75DX</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Otero-Muras, I.</creator><creator>Franco-Uría, A.</creator><creator>Alonso, A.A.</creator><creator>Balsa-Canto, E.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20100301</creationdate><title>Dynamic multi-compartmental modelling of metal bioaccumulation in fish: Identifiability implications</title><author>Otero-Muras, I. ; Franco-Uría, A. ; Alonso, A.A. ; Balsa-Canto, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-833a37b8222b11a6952b53c02cc23de3964796335b75dfb47e92b1dfc009591e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bioaccumulation</topic><topic>Calibration</topic><topic>Compartmental model</topic><topic>Dynamic modelling</topic><topic>Dynamics</topic><topic>Fish</topic><topic>Identifiability</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Modelling</topic><topic>Organs</topic><topic>Parameter estimation</topic><topic>Pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otero-Muras, I.</creatorcontrib><creatorcontrib>Franco-Uría, A.</creatorcontrib><creatorcontrib>Alonso, A.A.</creatorcontrib><creatorcontrib>Balsa-Canto, E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otero-Muras, I.</au><au>Franco-Uría, A.</au><au>Alonso, A.A.</au><au>Balsa-Canto, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic multi-compartmental modelling of metal bioaccumulation in fish: Identifiability implications</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>25</volume><issue>3</issue><spage>344</spage><epage>353</epage><pages>344-353</pages><issn>1364-8152</issn><abstract>Metal bioaccumulation in fish is influenced by factors specific to the chemical and environmental conditions, the exposure route and the species. For a better understanding of the main interactions among these factors, models are needed to capture the basic principles driving the dynamics of metal bioaccumulation in fish, taking into account different exposure routes and the distribution among representative organs. There is a significant amount of data in the literature concerning metal bioaccumulation experiments in different species of fish. Quantitative information about rate constants of the processes involved in bioaccumulation (diffusion, uptake and elimination) can be obtained from these data by means of dynamic models, that, once validated, can be used for predictive purposes. In this work, a compartmental model structure is developed aiming, in the first instance, to obtain the maximum amount of information from published experimental data. Once calibrated, the model can be further used to predict metal bioaccumulation under different scenarios. The model structure is able to reproduce the experimental behaviour for those species-metal pairs tested and, in addition, is demonstrated to be robust and identifiable. Then, the complete set of parameters can be estimated uniquely, for a specific species-metal pair by using concentration measures in a reduced number of organs. In this way, the optimal parameter sets obtained for different pairs can be compared, and the parameter specificity with respect to the metal or the species can be investigated.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2009.08.009</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2010-03, Vol.25 (3), p.344-353
issn 1364-8152
language eng
recordid cdi_proquest_miscellaneous_746297043
source Elsevier ScienceDirect Journals
subjects Bioaccumulation
Calibration
Compartmental model
Dynamic modelling
Dynamics
Fish
Identifiability
Mathematical models
Metals
Modelling
Organs
Parameter estimation
Pharmacokinetics
title Dynamic multi-compartmental modelling of metal bioaccumulation in fish: Identifiability implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20multi-compartmental%20modelling%20of%20metal%20bioaccumulation%20in%20fish:%20Identifiability%20implications&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Otero-Muras,%20I.&rft.date=2010-03-01&rft.volume=25&rft.issue=3&rft.spage=344&rft.epage=353&rft.pages=344-353&rft.issn=1364-8152&rft_id=info:doi/10.1016/j.envsoft.2009.08.009&rft_dat=%3Cproquest_cross%3E1777145525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777145525&rft_id=info:pmid/&rft_els_id=S1364815209002291&rfr_iscdi=true