Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models
Summary Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra (SN). The present study was designed to examine the therapeutic effect of hydrogen sulfide (H2S, a novel biological gas) on PD. The endogenous H2S leve...
Gespeichert in:
Veröffentlicht in: | Aging cell 2010-04, Vol.9 (2), p.135-146 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra (SN). The present study was designed to examine the therapeutic effect of hydrogen sulfide (H2S, a novel biological gas) on PD. The endogenous H2S level was markedly reduced in the SN in a 6‐hydroxydopamine (6‐OHDA)‐induced PD rat model. Systemic administration of NaHS (an H2S donor) dramatically reversed the progression of movement dysfunction, loss of tyrosine‐hydroxylase positive neurons in the SN and the elevated malondialdehyde level in injured striatum in the 6‐OHDA‐induced PD model. H2S specifically inhibited 6‐OHDA evoked NADPH oxidase activation and oxygen consumption. Similarly, administration of NaHS also prevented the development of PD induced by rotenone. NaHS treatment inhibited microglial activation in the SN and accumulation of pro‐inflammatory factors (e.g. TNF‐α and nitric oxide) in the striatum via NF‐κB pathway. Moreover, significantly less neurotoxicity was found in neurons treated with the conditioned medium from microglia incubated with both NaHS and rotenone compared to that with rotenone only, suggesting that the therapeutic effect of NaHS was, at least partially, secondary to its suppression of microglial activation. In summary, we demonstrate for the first time that H2S may serve as a neuroprotectant to treat and prevent neurotoxin‐induced neurodegeneration via multiple mechanisms including anti‐oxidative stress, anti‐inflammation and metabolic inhibition and therefore has potential therapeutic value for treatment of PD. |
---|---|
ISSN: | 1474-9718 1474-9726 |
DOI: | 10.1111/j.1474-9726.2009.00543.x |