Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder
Patients with autism spectrum disorder (ASD) frequently harbour chromosome rearrangements and segmental aneuploidies, which allow us to identify candidate genes. In a boy with mild facial dysmorphisms, speech delay and ASD, we reconstructed by karyotyping, FISH and SNP array-based segmental aneuploi...
Gespeichert in:
Veröffentlicht in: | Neurogenetics 2010-02, Vol.11 (1), p.81-89 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Patients with autism spectrum disorder (ASD) frequently harbour chromosome rearrangements and segmental aneuploidies, which allow us to identify candidate genes. In a boy with mild facial dysmorphisms, speech delay and ASD, we reconstructed by karyotyping, FISH and SNP array-based segmental aneuploidy profiling a highly complex chromosomal rearrangement involving at least three breaks in chromosome 1 and seven breaks in chromosome 7. Chromosome banding revealed an inversion of region 7q32.1–7q35 on the derivative chromosome 7. FISH with region-specific BACs mapped both inversion breakpoints and revealed additional breaks and structural changes in the
CNTNAP2
gene. Two gene segments were transposed and inserted into the 1q31.2 region, while the
CNTNAP2
segment between the two transposed parts as well as intron 13 to the 5-UTR were retained on the der(7). SNP array analysis revealed an additional de novo deletion encompassing the distal part of intron1 and exon 2 of
CNTNAP2
, which contains
FOXP2
binding sites. Second, we found another de novo deletion on chromosome 1q41, containing 15 annotated genes, including
KCTD3
and
USH2A
. Disruptions of the
CNTNAP2
gene have been associated with ASD and with Gilles de la Tourette syndrome (GTS). Comparison of disruptions of
CNTNAP2
in patients with GTS and ASD suggests that large proximal disruptions result in either GTS or ASD, while relatively small distal disruptions may be phenotypically neutral. For full-blown ASD to develop, a proximal disruption of
CNTNAP2
may have to occur concomitantly with additional genome mutations such as hemizygous deletions of the
KCTD3
and
USH2A
genes. |
---|---|
ISSN: | 1364-6745 1364-6753 |
DOI: | 10.1007/s10048-009-0205-1 |