Fractal characterization and simulation of rough surfaces

Roughness measurements on a variety of machined steel surfaces and a textured magnetic thin-film disk have shown that their topographies are multiscale and random. The power spectrum of each of these surfaces follows a power law within the length scales considered. This spectral behavior implies tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wear 1990-03, Vol.136 (2), p.313-327
Hauptverfasser: Majumdar, A., Tien, C.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 2
container_start_page 313
container_title Wear
container_volume 136
creator Majumdar, A.
Tien, C.L.
description Roughness measurements on a variety of machined steel surfaces and a textured magnetic thin-film disk have shown that their topographies are multiscale and random. The power spectrum of each of these surfaces follows a power law within the length scales considered. This spectral behavior implies that when the surface is repeatedly magnified, statistically similar images of the surface keep appearing. In this paper the fractal dimension is identified as an intrinsic property of such a multiscale structure and the Weierstrass-Mandelbrot (W-M) fractal function is used to introduce a new and simple method of roughness characterization. The power spectra of the stainless steel surface profiles coincide at high frequencies and correspond to a fractal dimension of 1.5. It is speculated that this coincidence occurs at small length scales because the surface remains unprocessed at such scales. Surface processing, such as grinding or lapping, reduces the power at lower frequencies up to a certain corner frequency, higher than which all surfaces behave as unprocessed ones. The W-M function is also used to simulate deterministically both brownian and non-brownian rough surfaces which exhibit statistical resemblance to real surfaces.
doi_str_mv 10.1016/0043-1648(90)90154-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746252721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0043164890901543</els_id><sourcerecordid>25664407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-95a2064330ab89ed9a0e7b6ed765337fe0f570b063dbcee4dce1755ed84b9ade3</originalsourceid><addsrcrecordid>eNqNkDtPwzAUhS0EEqXwDxgy8RgC1_ErXpBQRQGpEgvMlmPfUKO0KXaCBL-ehiDGiumeK33nDB8hpxSuKFB5DcBZTiUvLzRcaqCC52yPTGipWF4IpfbJ5A85JEcpvQEA1UJOiJ5H6zrbZG5ph4QxfNkutOvMrn2Wwqpvxrets9j2r8ss9bG2DtMxOahtk_Dk907Jy_zuefaQL57uH2e3i9xxybtcC1uA5IyBrUqNXltAVUn0SgrGVI1QCwUVSOYrh8i9Q6qEQF_ySluPbErOx91NbN97TJ1ZheSwaewa2z4ZxWUhClXQLXm2kyyElJyD-hfIOJRbkI-gi21KEWuziWFl46ehYAb1ZvBqBq9Gg_lRb9i2djPWcOvlI2A0yQVcO_QhouuMb8PugW9LrYpl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25663408</pqid></control><display><type>article</type><title>Fractal characterization and simulation of rough surfaces</title><source>Elsevier ScienceDirect Journals</source><creator>Majumdar, A. ; Tien, C.L.</creator><creatorcontrib>Majumdar, A. ; Tien, C.L.</creatorcontrib><description>Roughness measurements on a variety of machined steel surfaces and a textured magnetic thin-film disk have shown that their topographies are multiscale and random. The power spectrum of each of these surfaces follows a power law within the length scales considered. This spectral behavior implies that when the surface is repeatedly magnified, statistically similar images of the surface keep appearing. In this paper the fractal dimension is identified as an intrinsic property of such a multiscale structure and the Weierstrass-Mandelbrot (W-M) fractal function is used to introduce a new and simple method of roughness characterization. The power spectra of the stainless steel surface profiles coincide at high frequencies and correspond to a fractal dimension of 1.5. It is speculated that this coincidence occurs at small length scales because the surface remains unprocessed at such scales. Surface processing, such as grinding or lapping, reduces the power at lower frequencies up to a certain corner frequency, higher than which all surfaces behave as unprocessed ones. The W-M function is also used to simulate deterministically both brownian and non-brownian rough surfaces which exhibit statistical resemblance to real surfaces.</description><identifier>ISSN: 0043-1648</identifier><identifier>EISSN: 1873-2577</identifier><identifier>DOI: 10.1016/0043-1648(90)90154-3</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>steel ; wear</subject><ispartof>Wear, 1990-03, Vol.136 (2), p.313-327</ispartof><rights>1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-95a2064330ab89ed9a0e7b6ed765337fe0f570b063dbcee4dce1755ed84b9ade3</citedby><cites>FETCH-LOGICAL-c464t-95a2064330ab89ed9a0e7b6ed765337fe0f570b063dbcee4dce1755ed84b9ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0043164890901543$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Majumdar, A.</creatorcontrib><creatorcontrib>Tien, C.L.</creatorcontrib><title>Fractal characterization and simulation of rough surfaces</title><title>Wear</title><description>Roughness measurements on a variety of machined steel surfaces and a textured magnetic thin-film disk have shown that their topographies are multiscale and random. The power spectrum of each of these surfaces follows a power law within the length scales considered. This spectral behavior implies that when the surface is repeatedly magnified, statistically similar images of the surface keep appearing. In this paper the fractal dimension is identified as an intrinsic property of such a multiscale structure and the Weierstrass-Mandelbrot (W-M) fractal function is used to introduce a new and simple method of roughness characterization. The power spectra of the stainless steel surface profiles coincide at high frequencies and correspond to a fractal dimension of 1.5. It is speculated that this coincidence occurs at small length scales because the surface remains unprocessed at such scales. Surface processing, such as grinding or lapping, reduces the power at lower frequencies up to a certain corner frequency, higher than which all surfaces behave as unprocessed ones. The W-M function is also used to simulate deterministically both brownian and non-brownian rough surfaces which exhibit statistical resemblance to real surfaces.</description><subject>steel</subject><subject>wear</subject><issn>0043-1648</issn><issn>1873-2577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAUhS0EEqXwDxgy8RgC1_ErXpBQRQGpEgvMlmPfUKO0KXaCBL-ehiDGiumeK33nDB8hpxSuKFB5DcBZTiUvLzRcaqCC52yPTGipWF4IpfbJ5A85JEcpvQEA1UJOiJ5H6zrbZG5ph4QxfNkutOvMrn2Wwqpvxrets9j2r8ss9bG2DtMxOahtk_Dk907Jy_zuefaQL57uH2e3i9xxybtcC1uA5IyBrUqNXltAVUn0SgrGVI1QCwUVSOYrh8i9Q6qEQF_ySluPbErOx91NbN97TJ1ZheSwaewa2z4ZxWUhClXQLXm2kyyElJyD-hfIOJRbkI-gi21KEWuziWFl46ehYAb1ZvBqBq9Gg_lRb9i2djPWcOvlI2A0yQVcO_QhouuMb8PugW9LrYpl</recordid><startdate>19900301</startdate><enddate>19900301</enddate><creator>Majumdar, A.</creator><creator>Tien, C.L.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>8BQ</scope><scope>JG9</scope><scope>7TC</scope></search><sort><creationdate>19900301</creationdate><title>Fractal characterization and simulation of rough surfaces</title><author>Majumdar, A. ; Tien, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-95a2064330ab89ed9a0e7b6ed765337fe0f570b063dbcee4dce1755ed84b9ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>steel</topic><topic>wear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majumdar, A.</creatorcontrib><creatorcontrib>Tien, C.L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Wear</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majumdar, A.</au><au>Tien, C.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal characterization and simulation of rough surfaces</atitle><jtitle>Wear</jtitle><date>1990-03-01</date><risdate>1990</risdate><volume>136</volume><issue>2</issue><spage>313</spage><epage>327</epage><pages>313-327</pages><issn>0043-1648</issn><eissn>1873-2577</eissn><abstract>Roughness measurements on a variety of machined steel surfaces and a textured magnetic thin-film disk have shown that their topographies are multiscale and random. The power spectrum of each of these surfaces follows a power law within the length scales considered. This spectral behavior implies that when the surface is repeatedly magnified, statistically similar images of the surface keep appearing. In this paper the fractal dimension is identified as an intrinsic property of such a multiscale structure and the Weierstrass-Mandelbrot (W-M) fractal function is used to introduce a new and simple method of roughness characterization. The power spectra of the stainless steel surface profiles coincide at high frequencies and correspond to a fractal dimension of 1.5. It is speculated that this coincidence occurs at small length scales because the surface remains unprocessed at such scales. Surface processing, such as grinding or lapping, reduces the power at lower frequencies up to a certain corner frequency, higher than which all surfaces behave as unprocessed ones. The W-M function is also used to simulate deterministically both brownian and non-brownian rough surfaces which exhibit statistical resemblance to real surfaces.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0043-1648(90)90154-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1648
ispartof Wear, 1990-03, Vol.136 (2), p.313-327
issn 0043-1648
1873-2577
language eng
recordid cdi_proquest_miscellaneous_746252721
source Elsevier ScienceDirect Journals
subjects steel
wear
title Fractal characterization and simulation of rough surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20characterization%20and%20simulation%20of%20rough%20surfaces&rft.jtitle=Wear&rft.au=Majumdar,%20A.&rft.date=1990-03-01&rft.volume=136&rft.issue=2&rft.spage=313&rft.epage=327&rft.pages=313-327&rft.issn=0043-1648&rft.eissn=1873-2577&rft_id=info:doi/10.1016/0043-1648(90)90154-3&rft_dat=%3Cproquest_cross%3E25664407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25663408&rft_id=info:pmid/&rft_els_id=0043164890901543&rfr_iscdi=true