Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization

For the investigation of the geometric nonlinear effect of suspension bridges under random wind loads, a frequency domain method based on a stochastic linearization technique is presented. The equation of motion is formulated by including the coupling between the vertical and the torsional motions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probabilistic engineering mechanics 1988, Vol.3 (2), p.102-111
Hauptverfasser: Hyun, C.H., Yun, C.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue 2
container_start_page 102
container_title Probabilistic engineering mechanics
container_volume 3
creator Hyun, C.H.
Yun, C.B.
description For the investigation of the geometric nonlinear effect of suspension bridges under random wind loads, a frequency domain method based on a stochastic linearization technique is presented. The equation of motion is formulated by including the coupling between the vertical and the torsional motions. In the linearization procedure, the nonlinear terms are approximated as a sum of linear and constant terms in order to take into account the nonzero mean components as well as the fluctuating components of structural responses. The verification has been made on a case with four modal degrees of freedom. Example analyses have been carried out on two structures for various wind speeds and wind force parameters. Numerical results indicate that, by including the nonlinearity into the analysis, the dynamic responses of the bridges, particularly in the vertical direction, change considerably.
doi_str_mv 10.1016/0266-8920(88)90022-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746251153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0266892088900227</els_id><sourcerecordid>24929466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-bcf165add45d924bd053072ba1e2f47aa9127ff5dd2fa09de700e991175ee8503</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK7-Aw85iB-H1kqm0-lchGXxCxa96DlUJxWN9CRjqkcZf709zrLHPdXleZ-CR4inCl4rUMMb0MPQjU7Dy3F85QC07uw9sVGjHbteW3NfbG6Rh-IR808AZVXvNiJ-rmXOhbDJeCy4y0FiwfnImWVNkg-8p8K5Fjm1HL8Ty0OJ1GTDEutO_sklyrliZDkdJS81_EBeVsnZmf_ism4fiwcJZ6YnN_dCfHv_7uvVx-76y4dPV5fXXdADLN0UkhoMxtib6HQ_RTBbsHpCRTr1FtEpbVMyMeqE4CJZAHJOKWuIRgPbC_Hi7N23-utAvPhd5kDzjIXqgb3tB22UMtuVfH4nqXunXT8MK9ifwdAqc6Pk9y3vsB29An-K709l_amsH0f_P7636-zZjR854JzWXCHz7daCdQ5O2NszRmuV35ma55CpBIq5UVh8rPnuP_8AULOZ-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24929466</pqid></control><display><type>article</type><title>Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hyun, C.H. ; Yun, C.B.</creator><creatorcontrib>Hyun, C.H. ; Yun, C.B.</creatorcontrib><description>For the investigation of the geometric nonlinear effect of suspension bridges under random wind loads, a frequency domain method based on a stochastic linearization technique is presented. The equation of motion is formulated by including the coupling between the vertical and the torsional motions. In the linearization procedure, the nonlinear terms are approximated as a sum of linear and constant terms in order to take into account the nonzero mean components as well as the fluctuating components of structural responses. The verification has been made on a case with four modal degrees of freedom. Example analyses have been carried out on two structures for various wind speeds and wind force parameters. Numerical results indicate that, by including the nonlinearity into the analysis, the dynamic responses of the bridges, particularly in the vertical direction, change considerably.</description><identifier>ISSN: 0266-8920</identifier><identifier>EISSN: 1878-4275</identifier><identifier>DOI: 10.1016/0266-8920(88)90022-7</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Bridges ; Buildings. Public works ; civil engineering ; Exact sciences and technology ; frequency domain analysis ; geometric nonlinearity ; Golden Gate Bridge ; mode superposition ; Namhae Bridge ; random wind force ; spatial correlation of wind velocity ; stochastic linearization ; Stresses. Safety ; structural analysis ; Structural analysis. Stresses ; suspension bridge ; Suspension bridges. Stayed girder bridges. Bascule bridges. Swing bridges ; torsion ; torsional motion ; vertical motion</subject><ispartof>Probabilistic engineering mechanics, 1988, Vol.3 (2), p.102-111</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-bcf165add45d924bd053072ba1e2f47aa9127ff5dd2fa09de700e991175ee8503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0266-8920(88)90022-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7079907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyun, C.H.</creatorcontrib><creatorcontrib>Yun, C.B.</creatorcontrib><title>Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization</title><title>Probabilistic engineering mechanics</title><description>For the investigation of the geometric nonlinear effect of suspension bridges under random wind loads, a frequency domain method based on a stochastic linearization technique is presented. The equation of motion is formulated by including the coupling between the vertical and the torsional motions. In the linearization procedure, the nonlinear terms are approximated as a sum of linear and constant terms in order to take into account the nonzero mean components as well as the fluctuating components of structural responses. The verification has been made on a case with four modal degrees of freedom. Example analyses have been carried out on two structures for various wind speeds and wind force parameters. Numerical results indicate that, by including the nonlinearity into the analysis, the dynamic responses of the bridges, particularly in the vertical direction, change considerably.</description><subject>Applied sciences</subject><subject>Bridges</subject><subject>Buildings. Public works</subject><subject>civil engineering</subject><subject>Exact sciences and technology</subject><subject>frequency domain analysis</subject><subject>geometric nonlinearity</subject><subject>Golden Gate Bridge</subject><subject>mode superposition</subject><subject>Namhae Bridge</subject><subject>random wind force</subject><subject>spatial correlation of wind velocity</subject><subject>stochastic linearization</subject><subject>Stresses. Safety</subject><subject>structural analysis</subject><subject>Structural analysis. Stresses</subject><subject>suspension bridge</subject><subject>Suspension bridges. Stayed girder bridges. Bascule bridges. Swing bridges</subject><subject>torsion</subject><subject>torsional motion</subject><subject>vertical motion</subject><issn>0266-8920</issn><issn>1878-4275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOK7-Aw85iB-H1kqm0-lchGXxCxa96DlUJxWN9CRjqkcZf709zrLHPdXleZ-CR4inCl4rUMMb0MPQjU7Dy3F85QC07uw9sVGjHbteW3NfbG6Rh-IR808AZVXvNiJ-rmXOhbDJeCy4y0FiwfnImWVNkg-8p8K5Fjm1HL8Ty0OJ1GTDEutO_sklyrliZDkdJS81_EBeVsnZmf_ism4fiwcJZ6YnN_dCfHv_7uvVx-76y4dPV5fXXdADLN0UkhoMxtib6HQ_RTBbsHpCRTr1FtEpbVMyMeqE4CJZAHJOKWuIRgPbC_Hi7N23-utAvPhd5kDzjIXqgb3tB22UMtuVfH4nqXunXT8MK9ifwdAqc6Pk9y3vsB29An-K709l_amsH0f_P7636-zZjR854JzWXCHz7daCdQ5O2NszRmuV35ma55CpBIq5UVh8rPnuP_8AULOZ-g</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Hyun, C.H.</creator><creator>Yun, C.B.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1988</creationdate><title>Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization</title><author>Hyun, C.H. ; Yun, C.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-bcf165add45d924bd053072ba1e2f47aa9127ff5dd2fa09de700e991175ee8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Bridges</topic><topic>Buildings. Public works</topic><topic>civil engineering</topic><topic>Exact sciences and technology</topic><topic>frequency domain analysis</topic><topic>geometric nonlinearity</topic><topic>Golden Gate Bridge</topic><topic>mode superposition</topic><topic>Namhae Bridge</topic><topic>random wind force</topic><topic>spatial correlation of wind velocity</topic><topic>stochastic linearization</topic><topic>Stresses. Safety</topic><topic>structural analysis</topic><topic>Structural analysis. Stresses</topic><topic>suspension bridge</topic><topic>Suspension bridges. Stayed girder bridges. Bascule bridges. Swing bridges</topic><topic>torsion</topic><topic>torsional motion</topic><topic>vertical motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyun, C.H.</creatorcontrib><creatorcontrib>Yun, C.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Probabilistic engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyun, C.H.</au><au>Yun, C.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization</atitle><jtitle>Probabilistic engineering mechanics</jtitle><date>1988</date><risdate>1988</risdate><volume>3</volume><issue>2</issue><spage>102</spage><epage>111</epage><pages>102-111</pages><issn>0266-8920</issn><eissn>1878-4275</eissn><abstract>For the investigation of the geometric nonlinear effect of suspension bridges under random wind loads, a frequency domain method based on a stochastic linearization technique is presented. The equation of motion is formulated by including the coupling between the vertical and the torsional motions. In the linearization procedure, the nonlinear terms are approximated as a sum of linear and constant terms in order to take into account the nonzero mean components as well as the fluctuating components of structural responses. The verification has been made on a case with four modal degrees of freedom. Example analyses have been carried out on two structures for various wind speeds and wind force parameters. Numerical results indicate that, by including the nonlinearity into the analysis, the dynamic responses of the bridges, particularly in the vertical direction, change considerably.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0266-8920(88)90022-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-8920
ispartof Probabilistic engineering mechanics, 1988, Vol.3 (2), p.102-111
issn 0266-8920
1878-4275
language eng
recordid cdi_proquest_miscellaneous_746251153
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Bridges
Buildings. Public works
civil engineering
Exact sciences and technology
frequency domain analysis
geometric nonlinearity
Golden Gate Bridge
mode superposition
Namhae Bridge
random wind force
spatial correlation of wind velocity
stochastic linearization
Stresses. Safety
structural analysis
Structural analysis. Stresses
suspension bridge
Suspension bridges. Stayed girder bridges. Bascule bridges. Swing bridges
torsion
torsional motion
vertical motion
title Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20analysis%20of%20suspension%20bridges%20under%20random%20wind%20loads%20by%20stochastic%20linearization&rft.jtitle=Probabilistic%20engineering%20mechanics&rft.au=Hyun,%20C.H.&rft.date=1988&rft.volume=3&rft.issue=2&rft.spage=102&rft.epage=111&rft.pages=102-111&rft.issn=0266-8920&rft.eissn=1878-4275&rft_id=info:doi/10.1016/0266-8920(88)90022-7&rft_dat=%3Cproquest_cross%3E24929466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24929466&rft_id=info:pmid/&rft_els_id=0266892088900227&rfr_iscdi=true