Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization
For the investigation of the geometric nonlinear effect of suspension bridges under random wind loads, a frequency domain method based on a stochastic linearization technique is presented. The equation of motion is formulated by including the coupling between the vertical and the torsional motions....
Gespeichert in:
Veröffentlicht in: | Probabilistic engineering mechanics 1988, Vol.3 (2), p.102-111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | 2 |
container_start_page | 102 |
container_title | Probabilistic engineering mechanics |
container_volume | 3 |
creator | Hyun, C.H. Yun, C.B. |
description | For the investigation of the geometric nonlinear effect of suspension bridges under random wind loads, a frequency domain method based on a stochastic linearization technique is presented. The equation of motion is formulated by including the coupling between the vertical and the torsional motions. In the linearization procedure, the nonlinear terms are approximated as a sum of linear and constant terms in order to take into account the nonzero mean components as well as the fluctuating components of structural responses. The verification has been made on a case with four modal degrees of freedom. Example analyses have been carried out on two structures for various wind speeds and wind force parameters. Numerical results indicate that, by including the nonlinearity into the analysis, the dynamic responses of the bridges, particularly in the vertical direction, change considerably. |
doi_str_mv | 10.1016/0266-8920(88)90022-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746251153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0266892088900227</els_id><sourcerecordid>24929466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-bcf165add45d924bd053072ba1e2f47aa9127ff5dd2fa09de700e991175ee8503</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK7-Aw85iB-H1kqm0-lchGXxCxa96DlUJxWN9CRjqkcZf709zrLHPdXleZ-CR4inCl4rUMMb0MPQjU7Dy3F85QC07uw9sVGjHbteW3NfbG6Rh-IR808AZVXvNiJ-rmXOhbDJeCy4y0FiwfnImWVNkg-8p8K5Fjm1HL8Ty0OJ1GTDEutO_sklyrliZDkdJS81_EBeVsnZmf_ism4fiwcJZ6YnN_dCfHv_7uvVx-76y4dPV5fXXdADLN0UkhoMxtib6HQ_RTBbsHpCRTr1FtEpbVMyMeqE4CJZAHJOKWuIRgPbC_Hi7N23-utAvPhd5kDzjIXqgb3tB22UMtuVfH4nqXunXT8MK9ifwdAqc6Pk9y3vsB29An-K709l_amsH0f_P7636-zZjR854JzWXCHz7daCdQ5O2NszRmuV35ma55CpBIq5UVh8rPnuP_8AULOZ-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24929466</pqid></control><display><type>article</type><title>Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hyun, C.H. ; Yun, C.B.</creator><creatorcontrib>Hyun, C.H. ; Yun, C.B.</creatorcontrib><description>For the investigation of the geometric nonlinear effect of suspension bridges under random wind loads, a frequency domain method based on a stochastic linearization technique is presented. The equation of motion is formulated by including the coupling between the vertical and the torsional motions. In the linearization procedure, the nonlinear terms are approximated as a sum of linear and constant terms in order to take into account the nonzero mean components as well as the fluctuating components of structural responses. The verification has been made on a case with four modal degrees of freedom. Example analyses have been carried out on two structures for various wind speeds and wind force parameters. Numerical results indicate that, by including the nonlinearity into the analysis, the dynamic responses of the bridges, particularly in the vertical direction, change considerably.</description><identifier>ISSN: 0266-8920</identifier><identifier>EISSN: 1878-4275</identifier><identifier>DOI: 10.1016/0266-8920(88)90022-7</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Bridges ; Buildings. Public works ; civil engineering ; Exact sciences and technology ; frequency domain analysis ; geometric nonlinearity ; Golden Gate Bridge ; mode superposition ; Namhae Bridge ; random wind force ; spatial correlation of wind velocity ; stochastic linearization ; Stresses. Safety ; structural analysis ; Structural analysis. Stresses ; suspension bridge ; Suspension bridges. Stayed girder bridges. Bascule bridges. Swing bridges ; torsion ; torsional motion ; vertical motion</subject><ispartof>Probabilistic engineering mechanics, 1988, Vol.3 (2), p.102-111</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-bcf165add45d924bd053072ba1e2f47aa9127ff5dd2fa09de700e991175ee8503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0266-8920(88)90022-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7079907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyun, C.H.</creatorcontrib><creatorcontrib>Yun, C.B.</creatorcontrib><title>Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization</title><title>Probabilistic engineering mechanics</title><description>For the investigation of the geometric nonlinear effect of suspension bridges under random wind loads, a frequency domain method based on a stochastic linearization technique is presented. The equation of motion is formulated by including the coupling between the vertical and the torsional motions. In the linearization procedure, the nonlinear terms are approximated as a sum of linear and constant terms in order to take into account the nonzero mean components as well as the fluctuating components of structural responses. The verification has been made on a case with four modal degrees of freedom. Example analyses have been carried out on two structures for various wind speeds and wind force parameters. Numerical results indicate that, by including the nonlinearity into the analysis, the dynamic responses of the bridges, particularly in the vertical direction, change considerably.</description><subject>Applied sciences</subject><subject>Bridges</subject><subject>Buildings. Public works</subject><subject>civil engineering</subject><subject>Exact sciences and technology</subject><subject>frequency domain analysis</subject><subject>geometric nonlinearity</subject><subject>Golden Gate Bridge</subject><subject>mode superposition</subject><subject>Namhae Bridge</subject><subject>random wind force</subject><subject>spatial correlation of wind velocity</subject><subject>stochastic linearization</subject><subject>Stresses. Safety</subject><subject>structural analysis</subject><subject>Structural analysis. Stresses</subject><subject>suspension bridge</subject><subject>Suspension bridges. Stayed girder bridges. Bascule bridges. Swing bridges</subject><subject>torsion</subject><subject>torsional motion</subject><subject>vertical motion</subject><issn>0266-8920</issn><issn>1878-4275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOK7-Aw85iB-H1kqm0-lchGXxCxa96DlUJxWN9CRjqkcZf709zrLHPdXleZ-CR4inCl4rUMMb0MPQjU7Dy3F85QC07uw9sVGjHbteW3NfbG6Rh-IR808AZVXvNiJ-rmXOhbDJeCy4y0FiwfnImWVNkg-8p8K5Fjm1HL8Ty0OJ1GTDEutO_sklyrliZDkdJS81_EBeVsnZmf_ism4fiwcJZ6YnN_dCfHv_7uvVx-76y4dPV5fXXdADLN0UkhoMxtib6HQ_RTBbsHpCRTr1FtEpbVMyMeqE4CJZAHJOKWuIRgPbC_Hi7N23-utAvPhd5kDzjIXqgb3tB22UMtuVfH4nqXunXT8MK9ifwdAqc6Pk9y3vsB29An-K709l_amsH0f_P7636-zZjR854JzWXCHz7daCdQ5O2NszRmuV35ma55CpBIq5UVh8rPnuP_8AULOZ-g</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Hyun, C.H.</creator><creator>Yun, C.B.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1988</creationdate><title>Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization</title><author>Hyun, C.H. ; Yun, C.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-bcf165add45d924bd053072ba1e2f47aa9127ff5dd2fa09de700e991175ee8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Bridges</topic><topic>Buildings. Public works</topic><topic>civil engineering</topic><topic>Exact sciences and technology</topic><topic>frequency domain analysis</topic><topic>geometric nonlinearity</topic><topic>Golden Gate Bridge</topic><topic>mode superposition</topic><topic>Namhae Bridge</topic><topic>random wind force</topic><topic>spatial correlation of wind velocity</topic><topic>stochastic linearization</topic><topic>Stresses. Safety</topic><topic>structural analysis</topic><topic>Structural analysis. Stresses</topic><topic>suspension bridge</topic><topic>Suspension bridges. Stayed girder bridges. Bascule bridges. Swing bridges</topic><topic>torsion</topic><topic>torsional motion</topic><topic>vertical motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyun, C.H.</creatorcontrib><creatorcontrib>Yun, C.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Probabilistic engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyun, C.H.</au><au>Yun, C.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization</atitle><jtitle>Probabilistic engineering mechanics</jtitle><date>1988</date><risdate>1988</risdate><volume>3</volume><issue>2</issue><spage>102</spage><epage>111</epage><pages>102-111</pages><issn>0266-8920</issn><eissn>1878-4275</eissn><abstract>For the investigation of the geometric nonlinear effect of suspension bridges under random wind loads, a frequency domain method based on a stochastic linearization technique is presented. The equation of motion is formulated by including the coupling between the vertical and the torsional motions. In the linearization procedure, the nonlinear terms are approximated as a sum of linear and constant terms in order to take into account the nonzero mean components as well as the fluctuating components of structural responses. The verification has been made on a case with four modal degrees of freedom. Example analyses have been carried out on two structures for various wind speeds and wind force parameters. Numerical results indicate that, by including the nonlinearity into the analysis, the dynamic responses of the bridges, particularly in the vertical direction, change considerably.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0266-8920(88)90022-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-8920 |
ispartof | Probabilistic engineering mechanics, 1988, Vol.3 (2), p.102-111 |
issn | 0266-8920 1878-4275 |
language | eng |
recordid | cdi_proquest_miscellaneous_746251153 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Bridges Buildings. Public works civil engineering Exact sciences and technology frequency domain analysis geometric nonlinearity Golden Gate Bridge mode superposition Namhae Bridge random wind force spatial correlation of wind velocity stochastic linearization Stresses. Safety structural analysis Structural analysis. Stresses suspension bridge Suspension bridges. Stayed girder bridges. Bascule bridges. Swing bridges torsion torsional motion vertical motion |
title | Nonlinear dynamic analysis of suspension bridges under random wind loads by stochastic linearization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20analysis%20of%20suspension%20bridges%20under%20random%20wind%20loads%20by%20stochastic%20linearization&rft.jtitle=Probabilistic%20engineering%20mechanics&rft.au=Hyun,%20C.H.&rft.date=1988&rft.volume=3&rft.issue=2&rft.spage=102&rft.epage=111&rft.pages=102-111&rft.issn=0266-8920&rft.eissn=1878-4275&rft_id=info:doi/10.1016/0266-8920(88)90022-7&rft_dat=%3Cproquest_cross%3E24929466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24929466&rft_id=info:pmid/&rft_els_id=0266892088900227&rfr_iscdi=true |