Oscillations of a drop in aerodynamic levitation

The aim of this work is to model the axisymmetric small-amplitude oscillation modes of a liquid drop in aerodynamic levitation over a horizontal porous wall. In this objective, the boundary element method (BEM) was chosen to solve numerically the unsteady Stokes equations in the frequency domain. Ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2001-02, Vol.204 (1), p.167-175
Hauptverfasser: Hervieu, E., Coutris, N., Boichon, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 1
container_start_page 167
container_title Nuclear engineering and design
container_volume 204
creator Hervieu, E.
Coutris, N.
Boichon, C.
description The aim of this work is to model the axisymmetric small-amplitude oscillation modes of a liquid drop in aerodynamic levitation over a horizontal porous wall. In this objective, the boundary element method (BEM) was chosen to solve numerically the unsteady Stokes equations in the frequency domain. Arguments are presented to justify this choice. The use of this numerical method is quite original to describe coupled flows, such as those characterizing the levitation problem. A numerical tool, based on the BEM, was developed to perform the normal-mode analysis for the axisymmetric oscillations. The set of unsteady Stokes equations and boundary conditions governing the behavior of the fluids in both internal and external domains led to a linear homogeneous system with pulsation as a parameter. The eigenvalues of this system give the frequencies, while the associated eigenvectors provide the shapes of the oscillation modes. A sensitivity analysis was performed to choose the optimal values of the numerical parameters. Furthermore, the study of the influence of the physical parameters revealed the consistency of the modelization. At last, a comparison with experimental results proved to be satisfactory.
doi_str_mv 10.1016/S0029-5493(00)00321-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746239584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549300003216</els_id><sourcerecordid>26951088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-699b2e984b97bd2060ee7d47f228dc431fc5c808d098656db72fb3c98aa9fab43</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI4-gtCFeFlUTy5Nk5XI4A0GZqGCu5DmApFOMyZV8O1tZwZxpWdzNt9__sOH0DGGSwyYXz0BEFlWTNJzgAsASnDJd9AEi5qUdSVfd9HkB9lHBzm_wTiSTBAssgltq_sQu1xEX-jCprgqQldol6L96vQymKJ1n6FfQ4doz-s2u6PtnqKXu9vn2UM5X9w_zm7mpaFS9iWXsiFOCtbIurEEODhXW1Z7QoQ1jGJvKiNAWJCCV9w2NfENNVJoLb1uGJ2is83dVYrvHy73ahmyccOrnYsfWdWMEyorMZKnf5KEywqDEANYbUCTYs7JebVKYanTl8KgRpNqbVKNmhSAWptUfMidbAt0Nrr1SXcm5F9hKhgbsesN5gYtn8ElNah1nXE2JGd6ZWP4p-gb8taGbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26951088</pqid></control><display><type>article</type><title>Oscillations of a drop in aerodynamic levitation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hervieu, E. ; Coutris, N. ; Boichon, C.</creator><creatorcontrib>Hervieu, E. ; Coutris, N. ; Boichon, C.</creatorcontrib><description>The aim of this work is to model the axisymmetric small-amplitude oscillation modes of a liquid drop in aerodynamic levitation over a horizontal porous wall. In this objective, the boundary element method (BEM) was chosen to solve numerically the unsteady Stokes equations in the frequency domain. Arguments are presented to justify this choice. The use of this numerical method is quite original to describe coupled flows, such as those characterizing the levitation problem. A numerical tool, based on the BEM, was developed to perform the normal-mode analysis for the axisymmetric oscillations. The set of unsteady Stokes equations and boundary conditions governing the behavior of the fluids in both internal and external domains led to a linear homogeneous system with pulsation as a parameter. The eigenvalues of this system give the frequencies, while the associated eigenvectors provide the shapes of the oscillation modes. A sensitivity analysis was performed to choose the optimal values of the numerical parameters. Furthermore, the study of the influence of the physical parameters revealed the consistency of the modelization. At last, a comparison with experimental results proved to be satisfactory.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/S0029-5493(00)00321-6</identifier><identifier>CODEN: NEDEAU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aerodynamic levitation ; Aerodynamics ; Applied sciences ; Boundary conditions ; Boundary element method ; Drop oscillations ; Eigenvalues and eigenfunctions ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Frequency domain analysis ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical models ; Moving boundary two-phase flow ; Oscillations ; Sensitivity analysis ; Stokes flow ; Two phase flow</subject><ispartof>Nuclear engineering and design, 2001-02, Vol.204 (1), p.167-175</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-699b2e984b97bd2060ee7d47f228dc431fc5c808d098656db72fb3c98aa9fab43</citedby><cites>FETCH-LOGICAL-c399t-699b2e984b97bd2060ee7d47f228dc431fc5c808d098656db72fb3c98aa9fab43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0029-5493(00)00321-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1038446$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hervieu, E.</creatorcontrib><creatorcontrib>Coutris, N.</creatorcontrib><creatorcontrib>Boichon, C.</creatorcontrib><title>Oscillations of a drop in aerodynamic levitation</title><title>Nuclear engineering and design</title><description>The aim of this work is to model the axisymmetric small-amplitude oscillation modes of a liquid drop in aerodynamic levitation over a horizontal porous wall. In this objective, the boundary element method (BEM) was chosen to solve numerically the unsteady Stokes equations in the frequency domain. Arguments are presented to justify this choice. The use of this numerical method is quite original to describe coupled flows, such as those characterizing the levitation problem. A numerical tool, based on the BEM, was developed to perform the normal-mode analysis for the axisymmetric oscillations. The set of unsteady Stokes equations and boundary conditions governing the behavior of the fluids in both internal and external domains led to a linear homogeneous system with pulsation as a parameter. The eigenvalues of this system give the frequencies, while the associated eigenvectors provide the shapes of the oscillation modes. A sensitivity analysis was performed to choose the optimal values of the numerical parameters. Furthermore, the study of the influence of the physical parameters revealed the consistency of the modelization. At last, a comparison with experimental results proved to be satisfactory.</description><subject>Aerodynamic levitation</subject><subject>Aerodynamics</subject><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Boundary element method</subject><subject>Drop oscillations</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Frequency domain analysis</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical models</subject><subject>Moving boundary two-phase flow</subject><subject>Oscillations</subject><subject>Sensitivity analysis</subject><subject>Stokes flow</subject><subject>Two phase flow</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI4-gtCFeFlUTy5Nk5XI4A0GZqGCu5DmApFOMyZV8O1tZwZxpWdzNt9__sOH0DGGSwyYXz0BEFlWTNJzgAsASnDJd9AEi5qUdSVfd9HkB9lHBzm_wTiSTBAssgltq_sQu1xEX-jCprgqQldol6L96vQymKJ1n6FfQ4doz-s2u6PtnqKXu9vn2UM5X9w_zm7mpaFS9iWXsiFOCtbIurEEODhXW1Z7QoQ1jGJvKiNAWJCCV9w2NfENNVJoLb1uGJ2is83dVYrvHy73ahmyccOrnYsfWdWMEyorMZKnf5KEywqDEANYbUCTYs7JebVKYanTl8KgRpNqbVKNmhSAWptUfMidbAt0Nrr1SXcm5F9hKhgbsesN5gYtn8ElNah1nXE2JGd6ZWP4p-gb8taGbQ</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Hervieu, E.</creator><creator>Coutris, N.</creator><creator>Boichon, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TC</scope></search><sort><creationdate>20010201</creationdate><title>Oscillations of a drop in aerodynamic levitation</title><author>Hervieu, E. ; Coutris, N. ; Boichon, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-699b2e984b97bd2060ee7d47f228dc431fc5c808d098656db72fb3c98aa9fab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aerodynamic levitation</topic><topic>Aerodynamics</topic><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Boundary element method</topic><topic>Drop oscillations</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Frequency domain analysis</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical models</topic><topic>Moving boundary two-phase flow</topic><topic>Oscillations</topic><topic>Sensitivity analysis</topic><topic>Stokes flow</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hervieu, E.</creatorcontrib><creatorcontrib>Coutris, N.</creatorcontrib><creatorcontrib>Boichon, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hervieu, E.</au><au>Coutris, N.</au><au>Boichon, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillations of a drop in aerodynamic levitation</atitle><jtitle>Nuclear engineering and design</jtitle><date>2001-02-01</date><risdate>2001</risdate><volume>204</volume><issue>1</issue><spage>167</spage><epage>175</epage><pages>167-175</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><coden>NEDEAU</coden><abstract>The aim of this work is to model the axisymmetric small-amplitude oscillation modes of a liquid drop in aerodynamic levitation over a horizontal porous wall. In this objective, the boundary element method (BEM) was chosen to solve numerically the unsteady Stokes equations in the frequency domain. Arguments are presented to justify this choice. The use of this numerical method is quite original to describe coupled flows, such as those characterizing the levitation problem. A numerical tool, based on the BEM, was developed to perform the normal-mode analysis for the axisymmetric oscillations. The set of unsteady Stokes equations and boundary conditions governing the behavior of the fluids in both internal and external domains led to a linear homogeneous system with pulsation as a parameter. The eigenvalues of this system give the frequencies, while the associated eigenvectors provide the shapes of the oscillation modes. A sensitivity analysis was performed to choose the optimal values of the numerical parameters. Furthermore, the study of the influence of the physical parameters revealed the consistency of the modelization. At last, a comparison with experimental results proved to be satisfactory.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0029-5493(00)00321-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2001-02, Vol.204 (1), p.167-175
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_miscellaneous_746239584
source Elsevier ScienceDirect Journals Complete
subjects Aerodynamic levitation
Aerodynamics
Applied sciences
Boundary conditions
Boundary element method
Drop oscillations
Eigenvalues and eigenfunctions
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Frequency domain analysis
Installations for energy generation and conversion: thermal and electrical energy
Mathematical models
Moving boundary two-phase flow
Oscillations
Sensitivity analysis
Stokes flow
Two phase flow
title Oscillations of a drop in aerodynamic levitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillations%20of%20a%20drop%20in%20aerodynamic%20levitation&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Hervieu,%20E.&rft.date=2001-02-01&rft.volume=204&rft.issue=1&rft.spage=167&rft.epage=175&rft.pages=167-175&rft.issn=0029-5493&rft.eissn=1872-759X&rft.coden=NEDEAU&rft_id=info:doi/10.1016/S0029-5493(00)00321-6&rft_dat=%3Cproquest_cross%3E26951088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26951088&rft_id=info:pmid/&rft_els_id=S0029549300003216&rfr_iscdi=true